毫米波MIMO信道估计的一种高效分散方法

M. Trigka, C. Mavrokefalidis, K. Berberidis
{"title":"毫米波MIMO信道估计的一种高效分散方法","authors":"M. Trigka, C. Mavrokefalidis, K. Berberidis","doi":"10.1109/BalkanCom53780.2021.9593124","DOIUrl":null,"url":null,"abstract":"In the physical propagation environment, the channel matrices of neighboring users exhibit a joint sparsity structure due to the shared scatterers at the Base Station (BS) side. Based on this observation, we consider a multi-user Multiple-Input Multiple-Output (MIMO) system where the sparse channel estimation problem is tackled via an efficient fully distributed approach based on compressive sensing (CS). The involved users cooperatively estimate the sparsity support sets of the involved channels before individually estimate the channel coefficients, assuming that global and common sparsity support subsets exist. The performance of the proposed algorithm, named Weighted Distributed Simultaneous Orthogonal Matching Pursuit (WDiSOMP), is compared to Distributed Simultaneous Orthogonal Matching Pursuit (DiSOMP), local Simultaneous Orthogonal Matching Pursuit (SOMP) and a centralized solution based on SOMP in terms of the channel estimation under a multi-tasking scenario.","PeriodicalId":115090,"journal":{"name":"2021 International Balkan Conference on Communications and Networking (BalkanCom)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An efficient decentralized approach for mmWave MIMO Channel Estimation\",\"authors\":\"M. Trigka, C. Mavrokefalidis, K. Berberidis\",\"doi\":\"10.1109/BalkanCom53780.2021.9593124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the physical propagation environment, the channel matrices of neighboring users exhibit a joint sparsity structure due to the shared scatterers at the Base Station (BS) side. Based on this observation, we consider a multi-user Multiple-Input Multiple-Output (MIMO) system where the sparse channel estimation problem is tackled via an efficient fully distributed approach based on compressive sensing (CS). The involved users cooperatively estimate the sparsity support sets of the involved channels before individually estimate the channel coefficients, assuming that global and common sparsity support subsets exist. The performance of the proposed algorithm, named Weighted Distributed Simultaneous Orthogonal Matching Pursuit (WDiSOMP), is compared to Distributed Simultaneous Orthogonal Matching Pursuit (DiSOMP), local Simultaneous Orthogonal Matching Pursuit (SOMP) and a centralized solution based on SOMP in terms of the channel estimation under a multi-tasking scenario.\",\"PeriodicalId\":115090,\"journal\":{\"name\":\"2021 International Balkan Conference on Communications and Networking (BalkanCom)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Balkan Conference on Communications and Networking (BalkanCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BalkanCom53780.2021.9593124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Balkan Conference on Communications and Networking (BalkanCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BalkanCom53780.2021.9593124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在物理传播环境中,由于基站侧的共享散射体,相邻用户的信道矩阵呈现联合稀疏结构。基于这一观察,我们考虑了一个多用户多输入多输出(MIMO)系统,其中稀疏信道估计问题通过基于压缩感知(CS)的高效全分布式方法来解决。在假设存在全局和公共稀疏性支持子集的情况下,相关用户在单独估计信道系数之前,协同估计相关信道的稀疏性支持集。在多任务场景下,将加权分布式同时正交匹配追踪(WDiSOMP)算法的性能与分布式同时正交匹配追踪(DiSOMP)、本地同时正交匹配追踪(SOMP)和基于SOMP的集中式解决方案的信道估计进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient decentralized approach for mmWave MIMO Channel Estimation
In the physical propagation environment, the channel matrices of neighboring users exhibit a joint sparsity structure due to the shared scatterers at the Base Station (BS) side. Based on this observation, we consider a multi-user Multiple-Input Multiple-Output (MIMO) system where the sparse channel estimation problem is tackled via an efficient fully distributed approach based on compressive sensing (CS). The involved users cooperatively estimate the sparsity support sets of the involved channels before individually estimate the channel coefficients, assuming that global and common sparsity support subsets exist. The performance of the proposed algorithm, named Weighted Distributed Simultaneous Orthogonal Matching Pursuit (WDiSOMP), is compared to Distributed Simultaneous Orthogonal Matching Pursuit (DiSOMP), local Simultaneous Orthogonal Matching Pursuit (SOMP) and a centralized solution based on SOMP in terms of the channel estimation under a multi-tasking scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信