{"title":"基于MZO/CdTe和CdS/CIGS电池结构基础模型的最佳高效串联太阳能电池结构数值研究","authors":"Dinuka R Ratnasinghe, M. Attygalle","doi":"10.4038/IJMS.V6I1.88","DOIUrl":null,"url":null,"abstract":"Tandem solar cells have been researched to enhance the performance of the second generation (II-VI) thin-film solar cells. In this study, we have developed an efficient tandem solar cell model by optimizing the thickness of the (II-VI) layers and by introducing Mg doped ZnO as the window material for the top cell. The tandem solar cell model consists of a top cell, n-MZO/p-CdTe and a bottom cell, n-CdS/p-Cu(In, Ga)Se 2 (CIGS). The parameters of the computational model, such as thicknesses of n-CdS, p-CIGS. p-CdTe has been varied to improve the efficiency of the tandem solar cell and compared with the previous researched single junction thin-film solar cells. All the numerical experiments were conducted under one sun illumination condition with AM 1.5 G solar spectrum by using the Analysis of Microelectronic and Photonic Structures simulation software (AMPS-1D) and Solar Cell Capacitance Simulator (SCAPS 1-D) software. The observed open circuit voltage was 1.413 V and the efficiency wa sincreased to 28.84% and this is a huge improvement compared to the reported recorded best research cell values of 0.8 V and 24.2% respectively for single junction solar cell. KEYWORDS : AMPS-1D, SCAPS-1D, Tandem solar cell, II-VI photovoltaics, AM1.5G, Thin-film PV","PeriodicalId":400187,"journal":{"name":"EnergyRN: Energy Economics (Topic)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical Investigation of the Best Efficient Tandem Solar Cell Structures Using the Base Cell Models of MZO/CdTe and CdS/CIGS Cell Structures\",\"authors\":\"Dinuka R Ratnasinghe, M. Attygalle\",\"doi\":\"10.4038/IJMS.V6I1.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tandem solar cells have been researched to enhance the performance of the second generation (II-VI) thin-film solar cells. In this study, we have developed an efficient tandem solar cell model by optimizing the thickness of the (II-VI) layers and by introducing Mg doped ZnO as the window material for the top cell. The tandem solar cell model consists of a top cell, n-MZO/p-CdTe and a bottom cell, n-CdS/p-Cu(In, Ga)Se 2 (CIGS). The parameters of the computational model, such as thicknesses of n-CdS, p-CIGS. p-CdTe has been varied to improve the efficiency of the tandem solar cell and compared with the previous researched single junction thin-film solar cells. All the numerical experiments were conducted under one sun illumination condition with AM 1.5 G solar spectrum by using the Analysis of Microelectronic and Photonic Structures simulation software (AMPS-1D) and Solar Cell Capacitance Simulator (SCAPS 1-D) software. The observed open circuit voltage was 1.413 V and the efficiency wa sincreased to 28.84% and this is a huge improvement compared to the reported recorded best research cell values of 0.8 V and 24.2% respectively for single junction solar cell. KEYWORDS : AMPS-1D, SCAPS-1D, Tandem solar cell, II-VI photovoltaics, AM1.5G, Thin-film PV\",\"PeriodicalId\":400187,\"journal\":{\"name\":\"EnergyRN: Energy Economics (Topic)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyRN: Energy Economics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4038/IJMS.V6I1.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyRN: Energy Economics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4038/IJMS.V6I1.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Investigation of the Best Efficient Tandem Solar Cell Structures Using the Base Cell Models of MZO/CdTe and CdS/CIGS Cell Structures
Tandem solar cells have been researched to enhance the performance of the second generation (II-VI) thin-film solar cells. In this study, we have developed an efficient tandem solar cell model by optimizing the thickness of the (II-VI) layers and by introducing Mg doped ZnO as the window material for the top cell. The tandem solar cell model consists of a top cell, n-MZO/p-CdTe and a bottom cell, n-CdS/p-Cu(In, Ga)Se 2 (CIGS). The parameters of the computational model, such as thicknesses of n-CdS, p-CIGS. p-CdTe has been varied to improve the efficiency of the tandem solar cell and compared with the previous researched single junction thin-film solar cells. All the numerical experiments were conducted under one sun illumination condition with AM 1.5 G solar spectrum by using the Analysis of Microelectronic and Photonic Structures simulation software (AMPS-1D) and Solar Cell Capacitance Simulator (SCAPS 1-D) software. The observed open circuit voltage was 1.413 V and the efficiency wa sincreased to 28.84% and this is a huge improvement compared to the reported recorded best research cell values of 0.8 V and 24.2% respectively for single junction solar cell. KEYWORDS : AMPS-1D, SCAPS-1D, Tandem solar cell, II-VI photovoltaics, AM1.5G, Thin-film PV