Roger Iyengar, Q. Dong, Chanh Nguyen, P. Pillai, M. Satyanarayanan
{"title":"可穿戴式认知辅助的卸载整形","authors":"Roger Iyengar, Q. Dong, Chanh Nguyen, P. Pillai, M. Satyanarayanan","doi":"10.1109/EDGE60047.2023.00037","DOIUrl":null,"url":null,"abstract":"Edge computing has much lower elasticity than cloud computing because cloudlets have much smaller physical and electrical footprints than a data center. This hurts the scalability of applications that involve low-latency edge offload. We show how this problem can be addressed by leveraging the growing sophistication and compute capability of recent wearable devices. We investigate four Wearable Cognitive Assistance applications on three wearable devices, and show that the technique of offload shaping can significantly reduce network utilization and cloudlet load without compromising accuracy or performance.","PeriodicalId":369407,"journal":{"name":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Offload Shaping for Wearable Cognitive Assistance\",\"authors\":\"Roger Iyengar, Q. Dong, Chanh Nguyen, P. Pillai, M. Satyanarayanan\",\"doi\":\"10.1109/EDGE60047.2023.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing has much lower elasticity than cloud computing because cloudlets have much smaller physical and electrical footprints than a data center. This hurts the scalability of applications that involve low-latency edge offload. We show how this problem can be addressed by leveraging the growing sophistication and compute capability of recent wearable devices. We investigate four Wearable Cognitive Assistance applications on three wearable devices, and show that the technique of offload shaping can significantly reduce network utilization and cloudlet load without compromising accuracy or performance.\",\"PeriodicalId\":369407,\"journal\":{\"name\":\"2023 IEEE International Conference on Edge Computing and Communications (EDGE)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Edge Computing and Communications (EDGE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDGE60047.2023.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDGE60047.2023.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Edge computing has much lower elasticity than cloud computing because cloudlets have much smaller physical and electrical footprints than a data center. This hurts the scalability of applications that involve low-latency edge offload. We show how this problem can be addressed by leveraging the growing sophistication and compute capability of recent wearable devices. We investigate four Wearable Cognitive Assistance applications on three wearable devices, and show that the technique of offload shaping can significantly reduce network utilization and cloudlet load without compromising accuracy or performance.