野火识别:基于支持向量机分类器的语义分割

Marek Pecha, Zachary L. Langford, D. Hořák, Richard Tran Mills
{"title":"野火识别:基于支持向量机分类器的语义分割","authors":"Marek Pecha, Zachary L. Langford, D. Hořák, Richard Tran Mills","doi":"10.21136/panm.2022.16","DOIUrl":null,"url":null,"abstract":"This paper deals with wildfire identification in the Alaska regions as a semantic segmentation task using support vector machine classifiers. Instead of colour information represented by means of BGR channels, we proceed with a normalized reflectance over 152 days so that such time series is assigned to each pixel. We compare models associated with $\\mathcal{l}1$-loss and $\\mathcal{l}2$-loss functions and stopping criteria based on a projected gradient and duality gap in the presented benchmarks.","PeriodicalId":197168,"journal":{"name":"Programs and Algorithms of Numerical Mathematics 21","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wildfires identification: Semantic segmentation using support vector machine classifier\",\"authors\":\"Marek Pecha, Zachary L. Langford, D. Hořák, Richard Tran Mills\",\"doi\":\"10.21136/panm.2022.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with wildfire identification in the Alaska regions as a semantic segmentation task using support vector machine classifiers. Instead of colour information represented by means of BGR channels, we proceed with a normalized reflectance over 152 days so that such time series is assigned to each pixel. We compare models associated with $\\\\mathcal{l}1$-loss and $\\\\mathcal{l}2$-loss functions and stopping criteria based on a projected gradient and duality gap in the presented benchmarks.\",\"PeriodicalId\":197168,\"journal\":{\"name\":\"Programs and Algorithms of Numerical Mathematics 21\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programs and Algorithms of Numerical Mathematics 21\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21136/panm.2022.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programs and Algorithms of Numerical Mathematics 21","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21136/panm.2022.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用支持向量机分类器对阿拉斯加地区的野火识别进行语义分割。我们不再使用BGR通道表示的颜色信息,而是使用152天的归一化反射率,以便将这样的时间序列分配给每个像素。我们比较了与$\mathcal{l}1$-loss和$\mathcal{l}2$-loss函数相关的模型,以及基于所提供基准中的投影梯度和对偶性差距的停止标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wildfires identification: Semantic segmentation using support vector machine classifier
This paper deals with wildfire identification in the Alaska regions as a semantic segmentation task using support vector machine classifiers. Instead of colour information represented by means of BGR channels, we proceed with a normalized reflectance over 152 days so that such time series is assigned to each pixel. We compare models associated with $\mathcal{l}1$-loss and $\mathcal{l}2$-loss functions and stopping criteria based on a projected gradient and duality gap in the presented benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信