{"title":"机器学习应用开发中的挑战:一份工业经验报告","authors":"Md Saidur Rahman, Foutse Khomh, Emilio Rivera, Yann-Gaël Guéhéneuc, Bernd Lehnert","doi":"10.1145/3526073.3527593","DOIUrl":null,"url":null,"abstract":"SAP is the market leader in enterprise application software offering an end-to-end suite of applications and services to enable their customers worldwide to operate their business. Especially, retail customers of SAP deal with millions of sales transactions for their day-to-day business. Transactions are created during retail sales at the point of sale (POS) terminals and those transactions are then sent to some central servers for validations and other business operations. A considerable proportion of the retail transactions may have inconsistencies or anomalies due to many technical and human errors. SAP provides an automated process for error detection but still requires a manual process by dedicated employees using workbench software for correction. However, manual corrections of these errors are time-consuming, labor-intensive, and might be prone to further errors due to incorrect modifications. Thus, automated detection and correction of transaction errors are very important regarding their potential business values and the improvement in the business workflow. In this paper, we report on our experience from a project where we develop an AI-based system to automatically detect transaction errors and propose corrections. We identify and discuss the challenges that we faced during this collaborative research and development project, from two distinct perspectives: Software Engineering and Machine Learning. We report on our experience and insights from the project with guidelines for the identified challenges. We collect developers’ feedback for qualitative analysis of our findings. We believe that our findings and recommendations can help other researchers and practitioners embarking into similar endeavours. CCS CONCEPTS • Software and its engineering → Programming teams.","PeriodicalId":129536,"journal":{"name":"2022 IEEE/ACM 1st International Workshop on Software Engineering for Responsible Artificial Intelligence (SE4RAI)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Challenges in Machine Learning Application Development: An Industrial Experience Report\",\"authors\":\"Md Saidur Rahman, Foutse Khomh, Emilio Rivera, Yann-Gaël Guéhéneuc, Bernd Lehnert\",\"doi\":\"10.1145/3526073.3527593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SAP is the market leader in enterprise application software offering an end-to-end suite of applications and services to enable their customers worldwide to operate their business. Especially, retail customers of SAP deal with millions of sales transactions for their day-to-day business. Transactions are created during retail sales at the point of sale (POS) terminals and those transactions are then sent to some central servers for validations and other business operations. A considerable proportion of the retail transactions may have inconsistencies or anomalies due to many technical and human errors. SAP provides an automated process for error detection but still requires a manual process by dedicated employees using workbench software for correction. However, manual corrections of these errors are time-consuming, labor-intensive, and might be prone to further errors due to incorrect modifications. Thus, automated detection and correction of transaction errors are very important regarding their potential business values and the improvement in the business workflow. In this paper, we report on our experience from a project where we develop an AI-based system to automatically detect transaction errors and propose corrections. We identify and discuss the challenges that we faced during this collaborative research and development project, from two distinct perspectives: Software Engineering and Machine Learning. We report on our experience and insights from the project with guidelines for the identified challenges. We collect developers’ feedback for qualitative analysis of our findings. We believe that our findings and recommendations can help other researchers and practitioners embarking into similar endeavours. CCS CONCEPTS • Software and its engineering → Programming teams.\",\"PeriodicalId\":129536,\"journal\":{\"name\":\"2022 IEEE/ACM 1st International Workshop on Software Engineering for Responsible Artificial Intelligence (SE4RAI)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 1st International Workshop on Software Engineering for Responsible Artificial Intelligence (SE4RAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526073.3527593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 1st International Workshop on Software Engineering for Responsible Artificial Intelligence (SE4RAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526073.3527593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Challenges in Machine Learning Application Development: An Industrial Experience Report
SAP is the market leader in enterprise application software offering an end-to-end suite of applications and services to enable their customers worldwide to operate their business. Especially, retail customers of SAP deal with millions of sales transactions for their day-to-day business. Transactions are created during retail sales at the point of sale (POS) terminals and those transactions are then sent to some central servers for validations and other business operations. A considerable proportion of the retail transactions may have inconsistencies or anomalies due to many technical and human errors. SAP provides an automated process for error detection but still requires a manual process by dedicated employees using workbench software for correction. However, manual corrections of these errors are time-consuming, labor-intensive, and might be prone to further errors due to incorrect modifications. Thus, automated detection and correction of transaction errors are very important regarding their potential business values and the improvement in the business workflow. In this paper, we report on our experience from a project where we develop an AI-based system to automatically detect transaction errors and propose corrections. We identify and discuss the challenges that we faced during this collaborative research and development project, from two distinct perspectives: Software Engineering and Machine Learning. We report on our experience and insights from the project with guidelines for the identified challenges. We collect developers’ feedback for qualitative analysis of our findings. We believe that our findings and recommendations can help other researchers and practitioners embarking into similar endeavours. CCS CONCEPTS • Software and its engineering → Programming teams.