使用标记随机集过滤器的在线视觉跟踪遮挡处理

T. Rathnayake, A. Gostar, R. Hoseinnezhad, A. Bab-Hadiashar
{"title":"使用标记随机集过滤器的在线视觉跟踪遮挡处理","authors":"T. Rathnayake, A. Gostar, R. Hoseinnezhad, A. Bab-Hadiashar","doi":"10.1109/ICCAIS.2017.8217567","DOIUrl":null,"url":null,"abstract":"This paper presents a novel solution to the occlusion handling problem in pedestrian tracking using labeled random finite set theory. The occlusion handling module uses motion and color cues of tracked targets to recover target labels after occlusion. An effective algorithm is also proposed for false alarm detection and removal which is designed based on tracked targets features such as, overlap ratio, size similarity and the time of track initialization of the tracked targets. We implement our solution using sequential Monte Carlo method, and compare it with state-of-the-art visual tracking methods. The results show that the proposed algorithm perform favorably in terms of various standard performance metrics.","PeriodicalId":410094,"journal":{"name":"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Occlusion handling for online visual tracking using labeled random set filters\",\"authors\":\"T. Rathnayake, A. Gostar, R. Hoseinnezhad, A. Bab-Hadiashar\",\"doi\":\"10.1109/ICCAIS.2017.8217567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel solution to the occlusion handling problem in pedestrian tracking using labeled random finite set theory. The occlusion handling module uses motion and color cues of tracked targets to recover target labels after occlusion. An effective algorithm is also proposed for false alarm detection and removal which is designed based on tracked targets features such as, overlap ratio, size similarity and the time of track initialization of the tracked targets. We implement our solution using sequential Monte Carlo method, and compare it with state-of-the-art visual tracking methods. The results show that the proposed algorithm perform favorably in terms of various standard performance metrics.\",\"PeriodicalId\":410094,\"journal\":{\"name\":\"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS.2017.8217567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2017.8217567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种利用标记随机有限集理论解决行人跟踪中遮挡问题的新方法。遮挡处理模块使用被跟踪目标的运动和颜色线索来恢复遮挡后的目标标签。根据被跟踪目标的重叠比、大小相似度和航迹初始化时间等特征,提出了一种有效的虚警检测与去除算法。我们使用顺序蒙特卡罗方法实现我们的解决方案,并将其与最先进的视觉跟踪方法进行比较。结果表明,该算法在各种标准性能指标方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Occlusion handling for online visual tracking using labeled random set filters
This paper presents a novel solution to the occlusion handling problem in pedestrian tracking using labeled random finite set theory. The occlusion handling module uses motion and color cues of tracked targets to recover target labels after occlusion. An effective algorithm is also proposed for false alarm detection and removal which is designed based on tracked targets features such as, overlap ratio, size similarity and the time of track initialization of the tracked targets. We implement our solution using sequential Monte Carlo method, and compare it with state-of-the-art visual tracking methods. The results show that the proposed algorithm perform favorably in terms of various standard performance metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信