Nathaniel Morris, Christopher Stewart, L. Chen, R. Birke, Jaimie Kelley
{"title":"模型驱动的计算冲刺","authors":"Nathaniel Morris, Christopher Stewart, L. Chen, R. Birke, Jaimie Kelley","doi":"10.1145/3190508.3190543","DOIUrl":null,"url":null,"abstract":"Computational sprinting speeds up query execution by increasing power usage for short bursts. Sprinting policy decides when and how long to sprint. Poor policies inflate response time significantly. We propose a model-driven approach that chooses between sprinting policies based on their expected response time. However, sprinting alters query executions at runtime, creating a complex dependency between queuing and processing time. Our performance modeling approach employs offline profiling, machine learning, and first-principles simulation. Collectively, these modeling techniques capture the effects of sprinting on response time. We validated our modeling approach with 3 sprinting mechanisms across 9 workloads. Our performance modeling approach predicted response time with median error below 4% in most tests and median error of 11% in the worst case. We demonstrated model-driven sprinting for cloud providers seeking to colocate multiple workloads on AWS Burstable Instances while meeting service level objectives. Model-driven sprinting uncovered policies that achieved response time goals, allowing more workloads to colocate on a node. Compared to AWS Burstable policies, our approach increased revenue per node by 1.6X.","PeriodicalId":334267,"journal":{"name":"Proceedings of the Thirteenth EuroSys Conference","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Model-driven computational sprinting\",\"authors\":\"Nathaniel Morris, Christopher Stewart, L. Chen, R. Birke, Jaimie Kelley\",\"doi\":\"10.1145/3190508.3190543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational sprinting speeds up query execution by increasing power usage for short bursts. Sprinting policy decides when and how long to sprint. Poor policies inflate response time significantly. We propose a model-driven approach that chooses between sprinting policies based on their expected response time. However, sprinting alters query executions at runtime, creating a complex dependency between queuing and processing time. Our performance modeling approach employs offline profiling, machine learning, and first-principles simulation. Collectively, these modeling techniques capture the effects of sprinting on response time. We validated our modeling approach with 3 sprinting mechanisms across 9 workloads. Our performance modeling approach predicted response time with median error below 4% in most tests and median error of 11% in the worst case. We demonstrated model-driven sprinting for cloud providers seeking to colocate multiple workloads on AWS Burstable Instances while meeting service level objectives. Model-driven sprinting uncovered policies that achieved response time goals, allowing more workloads to colocate on a node. Compared to AWS Burstable policies, our approach increased revenue per node by 1.6X.\",\"PeriodicalId\":334267,\"journal\":{\"name\":\"Proceedings of the Thirteenth EuroSys Conference\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Thirteenth EuroSys Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3190508.3190543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Thirteenth EuroSys Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3190508.3190543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational sprinting speeds up query execution by increasing power usage for short bursts. Sprinting policy decides when and how long to sprint. Poor policies inflate response time significantly. We propose a model-driven approach that chooses between sprinting policies based on their expected response time. However, sprinting alters query executions at runtime, creating a complex dependency between queuing and processing time. Our performance modeling approach employs offline profiling, machine learning, and first-principles simulation. Collectively, these modeling techniques capture the effects of sprinting on response time. We validated our modeling approach with 3 sprinting mechanisms across 9 workloads. Our performance modeling approach predicted response time with median error below 4% in most tests and median error of 11% in the worst case. We demonstrated model-driven sprinting for cloud providers seeking to colocate multiple workloads on AWS Burstable Instances while meeting service level objectives. Model-driven sprinting uncovered policies that achieved response time goals, allowing more workloads to colocate on a node. Compared to AWS Burstable policies, our approach increased revenue per node by 1.6X.