一种新的面部表情识别约束非负矩阵分解方法

Viet-Hang Duong, Manh-Quan Bui, P. Bao, Jia-Ching Wang
{"title":"一种新的面部表情识别约束非负矩阵分解方法","authors":"Viet-Hang Duong, Manh-Quan Bui, P. Bao, Jia-Ching Wang","doi":"10.1109/ICOT.2017.8336093","DOIUrl":null,"url":null,"abstract":"A new NMF model, spatial constrained graph sparse nonnegative matrix factorization (SGSNMF) is adopted for facial expression recognition. In this model, the extracted features preserve the topological structure of the original images and achieve sparseness from L2 constraint on coefficient matrix, meanwhile the base satisfy pixel dispersion penalty. The proposed method takes advantage of the project gradient decent and is based on the alternating nonnegative least square framework. Experiments on two facial expression recognition scenarios that involve a whole face and an occluded face reveal that the proposed algorithm outperforms the prevalent NMF methods.","PeriodicalId":297245,"journal":{"name":"2017 International Conference on Orange Technologies (ICOT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new constrained nonnegative matrix factorization for facial expression recognition\",\"authors\":\"Viet-Hang Duong, Manh-Quan Bui, P. Bao, Jia-Ching Wang\",\"doi\":\"10.1109/ICOT.2017.8336093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new NMF model, spatial constrained graph sparse nonnegative matrix factorization (SGSNMF) is adopted for facial expression recognition. In this model, the extracted features preserve the topological structure of the original images and achieve sparseness from L2 constraint on coefficient matrix, meanwhile the base satisfy pixel dispersion penalty. The proposed method takes advantage of the project gradient decent and is based on the alternating nonnegative least square framework. Experiments on two facial expression recognition scenarios that involve a whole face and an occluded face reveal that the proposed algorithm outperforms the prevalent NMF methods.\",\"PeriodicalId\":297245,\"journal\":{\"name\":\"2017 International Conference on Orange Technologies (ICOT)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Orange Technologies (ICOT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOT.2017.8336093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Orange Technologies (ICOT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOT.2017.8336093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将空间约束图稀疏非负矩阵分解(SGSNMF)模型应用于面部表情识别。在该模型中,提取的特征保留了原始图像的拓扑结构,并在系数矩阵的L2约束下实现稀疏性,同时基底满足像素色散惩罚。该方法基于交替非负最小二乘框架,充分利用了项目梯度梯度的优点。在完整人脸和被遮挡人脸两种面部表情识别场景下的实验表明,该算法优于目前流行的NMF方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new constrained nonnegative matrix factorization for facial expression recognition
A new NMF model, spatial constrained graph sparse nonnegative matrix factorization (SGSNMF) is adopted for facial expression recognition. In this model, the extracted features preserve the topological structure of the original images and achieve sparseness from L2 constraint on coefficient matrix, meanwhile the base satisfy pixel dispersion penalty. The proposed method takes advantage of the project gradient decent and is based on the alternating nonnegative least square framework. Experiments on two facial expression recognition scenarios that involve a whole face and an occluded face reveal that the proposed algorithm outperforms the prevalent NMF methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信