{"title":"卷簧销剪接头组合梁试验","authors":"R. Hällmark, R. Nilforoush, V. Vestman, P. Collin","doi":"10.2749/ghent.2021.1700","DOIUrl":null,"url":null,"abstract":"Today, steel girder bridges with concrete deck slabs are generally constructed as steel-concrete composite structures, to utilize the material and the structural parts in an efficient way. However, many existing bridges constructed before the early 1980´s were designed without shear connectors at the steel-concrete interface. With increasing traffics loads and higher amount of load cycles, there is sometimes a need to strengthen these bridges. One way to increase the bending moment capacity is to create composite action by post-installation of shear connectors. The authors have studied the concept of strengthening by post-installed shear connectors, with a focus on a connector called coiled spring pin. This paper presents the results from the first beam tests performed with this kind of shear connector. In line with the previous push-out tests, the test results indicate a very ductile shear connection, with a potential to be a material- and cost-efficient strengthening alternative.","PeriodicalId":162435,"journal":{"name":"IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing of composite girders with coiled spring pin shear connectors\",\"authors\":\"R. Hällmark, R. Nilforoush, V. Vestman, P. Collin\",\"doi\":\"10.2749/ghent.2021.1700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, steel girder bridges with concrete deck slabs are generally constructed as steel-concrete composite structures, to utilize the material and the structural parts in an efficient way. However, many existing bridges constructed before the early 1980´s were designed without shear connectors at the steel-concrete interface. With increasing traffics loads and higher amount of load cycles, there is sometimes a need to strengthen these bridges. One way to increase the bending moment capacity is to create composite action by post-installation of shear connectors. The authors have studied the concept of strengthening by post-installed shear connectors, with a focus on a connector called coiled spring pin. This paper presents the results from the first beam tests performed with this kind of shear connector. In line with the previous push-out tests, the test results indicate a very ductile shear connection, with a potential to be a material- and cost-efficient strengthening alternative.\",\"PeriodicalId\":162435,\"journal\":{\"name\":\"IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2749/ghent.2021.1700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/ghent.2021.1700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Testing of composite girders with coiled spring pin shear connectors
Today, steel girder bridges with concrete deck slabs are generally constructed as steel-concrete composite structures, to utilize the material and the structural parts in an efficient way. However, many existing bridges constructed before the early 1980´s were designed without shear connectors at the steel-concrete interface. With increasing traffics loads and higher amount of load cycles, there is sometimes a need to strengthen these bridges. One way to increase the bending moment capacity is to create composite action by post-installation of shear connectors. The authors have studied the concept of strengthening by post-installed shear connectors, with a focus on a connector called coiled spring pin. This paper presents the results from the first beam tests performed with this kind of shear connector. In line with the previous push-out tests, the test results indicate a very ductile shear connection, with a potential to be a material- and cost-efficient strengthening alternative.