利用光纤耦合长波红外高光谱传感器测量燃烧室壁面温度和热流密度

A. Chandh, O. Bibik, S. Adhikari, David Wu, T. Lieuwen, P. Hsu, S. Roy, R. Sikorski, B. Emerson
{"title":"利用光纤耦合长波红外高光谱传感器测量燃烧室壁面温度和热流密度","authors":"A. Chandh, O. Bibik, S. Adhikari, David Wu, T. Lieuwen, P. Hsu, S. Roy, R. Sikorski, B. Emerson","doi":"10.1115/gt2021-58961","DOIUrl":null,"url":null,"abstract":"\n In this paper, we discuss the development of a non-intrusive surface temperature sensor based on long-wavelength infrared (LWIR) hyperspectral technology. The LWIR detection enables to minimize optical interferences from hot combustion gases (emission mostly within UV-MWIR region). Utilization of hyperspectral detection allows to further improve temperature measurement accuracy and precision. The developed sensor with fiber coupling provides the required flexibility to be maneuvered around/through combustor hardware. The LWIR fiber probe is fully protected by the custom-designed water-cooled probe housing. This device is designed to sustain temperature of 2400 K at pressure of 50 bar, which enables long-term optical diagnostics inside the practical high-pressure combustion facilities where extreme thermal acoustic perturbation and intense heat fluxes are present. The housing featured a diamond window to selectively measure spectra in the LWIR region to get accurate surface temperature exclusively of the combustor wall. The probe was installed into a RQL style combustor to get surface temperature of both hot and cold side of the combustor wall. Further, pointwise heat flux estimates across the combustion liner wall was derived using the temperature measurements.","PeriodicalId":121836,"journal":{"name":"Volume 3A: Combustion, Fuels, and Emissions","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combustor Wall Surface Temperature and Heat Flux Measurement Using a Fiber-Coupled Long Wave Infrared Hyperspectral Sensor\",\"authors\":\"A. Chandh, O. Bibik, S. Adhikari, David Wu, T. Lieuwen, P. Hsu, S. Roy, R. Sikorski, B. Emerson\",\"doi\":\"10.1115/gt2021-58961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we discuss the development of a non-intrusive surface temperature sensor based on long-wavelength infrared (LWIR) hyperspectral technology. The LWIR detection enables to minimize optical interferences from hot combustion gases (emission mostly within UV-MWIR region). Utilization of hyperspectral detection allows to further improve temperature measurement accuracy and precision. The developed sensor with fiber coupling provides the required flexibility to be maneuvered around/through combustor hardware. The LWIR fiber probe is fully protected by the custom-designed water-cooled probe housing. This device is designed to sustain temperature of 2400 K at pressure of 50 bar, which enables long-term optical diagnostics inside the practical high-pressure combustion facilities where extreme thermal acoustic perturbation and intense heat fluxes are present. The housing featured a diamond window to selectively measure spectra in the LWIR region to get accurate surface temperature exclusively of the combustor wall. The probe was installed into a RQL style combustor to get surface temperature of both hot and cold side of the combustor wall. Further, pointwise heat flux estimates across the combustion liner wall was derived using the temperature measurements.\",\"PeriodicalId\":121836,\"journal\":{\"name\":\"Volume 3A: Combustion, Fuels, and Emissions\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3A: Combustion, Fuels, and Emissions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-58961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3A: Combustion, Fuels, and Emissions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-58961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了基于长波长红外(LWIR)高光谱技术的非侵入式表面温度传感器的研制。LWIR检测能够最大限度地减少热燃烧气体(主要在UV-MWIR区域内发射)的光学干扰。利用高光谱检测可以进一步提高温度测量的精度和精度。所开发的具有光纤耦合的传感器提供了在燃烧器硬件周围/通过燃烧器硬件进行机动所需的灵活性。LWIR光纤探头由定制设计的水冷探头外壳完全保护。该装置的设计温度为2400k,压力为50bar,可以在存在极端热声扰动和强烈热通量的实际高压燃烧设施中进行长期光学诊断。该壳体具有一个金刚石窗,可以选择性地测量LWIR区域的光谱,以获得精确的燃烧室壁面温度。探头安装在RQL型燃烧室中,测量燃烧室壁面冷热面的温度。此外,利用温度测量得到了沿燃烧衬板壁面的逐点热流密度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combustor Wall Surface Temperature and Heat Flux Measurement Using a Fiber-Coupled Long Wave Infrared Hyperspectral Sensor
In this paper, we discuss the development of a non-intrusive surface temperature sensor based on long-wavelength infrared (LWIR) hyperspectral technology. The LWIR detection enables to minimize optical interferences from hot combustion gases (emission mostly within UV-MWIR region). Utilization of hyperspectral detection allows to further improve temperature measurement accuracy and precision. The developed sensor with fiber coupling provides the required flexibility to be maneuvered around/through combustor hardware. The LWIR fiber probe is fully protected by the custom-designed water-cooled probe housing. This device is designed to sustain temperature of 2400 K at pressure of 50 bar, which enables long-term optical diagnostics inside the practical high-pressure combustion facilities where extreme thermal acoustic perturbation and intense heat fluxes are present. The housing featured a diamond window to selectively measure spectra in the LWIR region to get accurate surface temperature exclusively of the combustor wall. The probe was installed into a RQL style combustor to get surface temperature of both hot and cold side of the combustor wall. Further, pointwise heat flux estimates across the combustion liner wall was derived using the temperature measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信