{"title":"任务5:通过集成预训练的语言模型对COVID-19潜在病例的自我报告推文进行分类","authors":"Ying Luo, L. Pereira, Kobayashi Ichiro","doi":"10.18653/V1/2021.SMM4H-1.25","DOIUrl":null,"url":null,"abstract":"Since the outbreak of coronavirus at the end of 2019, there have been numerous studies on coro- navirus in the NLP arena. Meanwhile, Twitter has been a valuable source of news and a pub- lic medium for the conveyance of information and personal expression. This paper describes the system developed by the Ochadai team for the Social Media Mining for Health Appli- cations (SMM4H) 2021 Task 5, which aims to automatically distinguish English tweets that self-report potential cases of COVID-19 from those that do not. We proposed a model ensemble that leverages pre-trained represen- tations from COVID-Twitter-BERT (Müller et al., 2020), RoBERTa (Liu et al., 2019), and Twitter-RoBERTa (Glazkova et al., 2021). Our model obtained F1-scores of 76% on the test set in the evaluation phase, and 77.5% in the post-evaluation phase.","PeriodicalId":378985,"journal":{"name":"Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OCHADAI at SMM4H-2021 Task 5: Classifying self-reporting tweets on potential cases of COVID-19 by ensembling pre-trained language models\",\"authors\":\"Ying Luo, L. Pereira, Kobayashi Ichiro\",\"doi\":\"10.18653/V1/2021.SMM4H-1.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the outbreak of coronavirus at the end of 2019, there have been numerous studies on coro- navirus in the NLP arena. Meanwhile, Twitter has been a valuable source of news and a pub- lic medium for the conveyance of information and personal expression. This paper describes the system developed by the Ochadai team for the Social Media Mining for Health Appli- cations (SMM4H) 2021 Task 5, which aims to automatically distinguish English tweets that self-report potential cases of COVID-19 from those that do not. We proposed a model ensemble that leverages pre-trained represen- tations from COVID-Twitter-BERT (Müller et al., 2020), RoBERTa (Liu et al., 2019), and Twitter-RoBERTa (Glazkova et al., 2021). Our model obtained F1-scores of 76% on the test set in the evaluation phase, and 77.5% in the post-evaluation phase.\",\"PeriodicalId\":378985,\"journal\":{\"name\":\"Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/V1/2021.SMM4H-1.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/V1/2021.SMM4H-1.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
OCHADAI at SMM4H-2021 Task 5: Classifying self-reporting tweets on potential cases of COVID-19 by ensembling pre-trained language models
Since the outbreak of coronavirus at the end of 2019, there have been numerous studies on coro- navirus in the NLP arena. Meanwhile, Twitter has been a valuable source of news and a pub- lic medium for the conveyance of information and personal expression. This paper describes the system developed by the Ochadai team for the Social Media Mining for Health Appli- cations (SMM4H) 2021 Task 5, which aims to automatically distinguish English tweets that self-report potential cases of COVID-19 from those that do not. We proposed a model ensemble that leverages pre-trained represen- tations from COVID-Twitter-BERT (Müller et al., 2020), RoBERTa (Liu et al., 2019), and Twitter-RoBERTa (Glazkova et al., 2021). Our model obtained F1-scores of 76% on the test set in the evaluation phase, and 77.5% in the post-evaluation phase.