面向标签质量的中文网页搜索结果聚类方法

Liping Zhang, Shoubin Dong, Ming Tao, Tiezhu Zhao
{"title":"面向标签质量的中文网页搜索结果聚类方法","authors":"Liping Zhang, Shoubin Dong, Ming Tao, Tiezhu Zhao","doi":"10.1109/WISM.2010.29","DOIUrl":null,"url":null,"abstract":"Web search results clustering is an important strategy of organizing the snippets for modern search engine. Due to the semantic problems, there are still many challenges. This paper proposes a method named label quality-oriented scheme (LQOS) to achieve the clustering quality in the aspect of label. Specialized for Chinese queries, LQOS is designed according to the criterion of “readable label”, aiming at reducing noisy labels, and achieving the informative, complete and concise labels. Experiments on Sougou Chinese queries show that LQOS outperforms Lingo algorithm in the metrics of labels quality and the percentage of clustered snippets.","PeriodicalId":119569,"journal":{"name":"2010 International Conference on Web Information Systems and Mining","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Label Quality-Oriented Method for Chinese Web Search Results Clustering\",\"authors\":\"Liping Zhang, Shoubin Dong, Ming Tao, Tiezhu Zhao\",\"doi\":\"10.1109/WISM.2010.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web search results clustering is an important strategy of organizing the snippets for modern search engine. Due to the semantic problems, there are still many challenges. This paper proposes a method named label quality-oriented scheme (LQOS) to achieve the clustering quality in the aspect of label. Specialized for Chinese queries, LQOS is designed according to the criterion of “readable label”, aiming at reducing noisy labels, and achieving the informative, complete and concise labels. Experiments on Sougou Chinese queries show that LQOS outperforms Lingo algorithm in the metrics of labels quality and the percentage of clustered snippets.\",\"PeriodicalId\":119569,\"journal\":{\"name\":\"2010 International Conference on Web Information Systems and Mining\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Web Information Systems and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISM.2010.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Web Information Systems and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISM.2010.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络搜索结果聚类是现代搜索引擎组织搜索片段的一种重要策略。由于语义方面的问题,仍然存在许多挑战。本文提出了一种标签质量导向方案(LQOS)来实现标签方面的聚类质量。LQOS专门针对中文查询,按照“可读标签”的标准进行设计,旨在减少标签的噪声,实现标签的信息量、完整性和简洁性。在搜狗中文查询上的实验表明,LQOS在标签质量和聚类片段百分比方面优于Lingo算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Label Quality-Oriented Method for Chinese Web Search Results Clustering
Web search results clustering is an important strategy of organizing the snippets for modern search engine. Due to the semantic problems, there are still many challenges. This paper proposes a method named label quality-oriented scheme (LQOS) to achieve the clustering quality in the aspect of label. Specialized for Chinese queries, LQOS is designed according to the criterion of “readable label”, aiming at reducing noisy labels, and achieving the informative, complete and concise labels. Experiments on Sougou Chinese queries show that LQOS outperforms Lingo algorithm in the metrics of labels quality and the percentage of clustered snippets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信