ACM-CR:引文推荐的手动注释测试集

Florian Boudin
{"title":"ACM-CR:引文推荐的手动注释测试集","authors":"Florian Boudin","doi":"10.1109/JCDL52503.2021.00035","DOIUrl":null,"url":null,"abstract":"Citation recommendation is intended to assist researchers in the process of searching for relevant papers to cite by recommending appropriate citations for a given input text. Existing test collections for this task are noisy and unreliable since they are built automatically from parsed PDF papers. In this paper, we present our ongoing effort at creating a publicly available, manually annotated test collection for citation recommendation. We also conduct a series of experiments to evaluate the effectiveness of content-based baseline models on the test collection, providing results for future work to improve upon. Our test collection and code to replicate experiments are available at https://github.com/boudinfl/acm-cr","PeriodicalId":112400,"journal":{"name":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ACM-CR: A Manually Annotated Test Collection for Citation Recommendation\",\"authors\":\"Florian Boudin\",\"doi\":\"10.1109/JCDL52503.2021.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Citation recommendation is intended to assist researchers in the process of searching for relevant papers to cite by recommending appropriate citations for a given input text. Existing test collections for this task are noisy and unreliable since they are built automatically from parsed PDF papers. In this paper, we present our ongoing effort at creating a publicly available, manually annotated test collection for citation recommendation. We also conduct a series of experiments to evaluate the effectiveness of content-based baseline models on the test collection, providing results for future work to improve upon. Our test collection and code to replicate experiments are available at https://github.com/boudinfl/acm-cr\",\"PeriodicalId\":112400,\"journal\":{\"name\":\"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCDL52503.2021.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCDL52503.2021.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引文推荐是为了帮助研究人员在搜索相关论文的过程中,对给定的输入文本推荐适当的引文。此任务的现有测试集合嘈杂且不可靠,因为它们是根据已解析的PDF文件自动构建的。在本文中,我们展示了我们正在努力创建一个公开可用的、手动注释的测试集,用于引文推荐。我们还进行了一系列实验来评估基于内容的基线模型在测试集合上的有效性,为将来的工作提供改进的结果。我们的测试集合和用于复制实验的代码可在https://github.com/boudinfl/acm-cr上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ACM-CR: A Manually Annotated Test Collection for Citation Recommendation
Citation recommendation is intended to assist researchers in the process of searching for relevant papers to cite by recommending appropriate citations for a given input text. Existing test collections for this task are noisy and unreliable since they are built automatically from parsed PDF papers. In this paper, we present our ongoing effort at creating a publicly available, manually annotated test collection for citation recommendation. We also conduct a series of experiments to evaluate the effectiveness of content-based baseline models on the test collection, providing results for future work to improve upon. Our test collection and code to replicate experiments are available at https://github.com/boudinfl/acm-cr
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信