面向网络智能信息检索的上下文敏感文本挖掘与信念修正

Raymond Y. K. Lau
{"title":"面向网络智能信息检索的上下文敏感文本挖掘与信念修正","authors":"Raymond Y. K. Lau","doi":"10.5555/1016416.1016417","DOIUrl":null,"url":null,"abstract":"Autonomous information agents alleviate the information overload problem on the Internet. The AGM belief revision framework provides a rigorous formal foundation to develop adaptive information agents. The expressive power of the belief revision logic allows information seekers' changing information preferences and the underlying retrieval contexts to be captured in information agents. By exploiting the relevant retrieval contexts, information agents can proactively recommend interesting information items to their users. Contextual knowledge for information retrieval can be acquired by information agents via context-sensitive text mining. The induction power brought by context-sensitive text mining and the nonmonotonic reasoning capability offered by a belief revision system are complementary to each other. This paper illustrates a novel approach of integrating the proposed text mining method into the belief revision based adaptive information agents to improve the agents' learning autonomy and prediction power. Our initial experiments show that the symbolic adaptive information agents outperform their vector space model based counterparts.","PeriodicalId":263450,"journal":{"name":"Web Intell. Agent Syst.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Context-sensitive text mining and belief revision for intelligent information retrieval on the web\",\"authors\":\"Raymond Y. K. Lau\",\"doi\":\"10.5555/1016416.1016417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous information agents alleviate the information overload problem on the Internet. The AGM belief revision framework provides a rigorous formal foundation to develop adaptive information agents. The expressive power of the belief revision logic allows information seekers' changing information preferences and the underlying retrieval contexts to be captured in information agents. By exploiting the relevant retrieval contexts, information agents can proactively recommend interesting information items to their users. Contextual knowledge for information retrieval can be acquired by information agents via context-sensitive text mining. The induction power brought by context-sensitive text mining and the nonmonotonic reasoning capability offered by a belief revision system are complementary to each other. This paper illustrates a novel approach of integrating the proposed text mining method into the belief revision based adaptive information agents to improve the agents' learning autonomy and prediction power. Our initial experiments show that the symbolic adaptive information agents outperform their vector space model based counterparts.\",\"PeriodicalId\":263450,\"journal\":{\"name\":\"Web Intell. Agent Syst.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intell. Agent Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/1016416.1016417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intell. Agent Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1016416.1016417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

自治信息代理缓解了Internet上的信息过载问题。AGM信念修正框架为自适应信息代理的开发提供了严格的形式化基础。信念修正逻辑的表达能力使得信息寻求者不断变化的信息偏好和潜在的检索上下文能够在信息代理中被捕获。通过利用相关的检索上下文,信息代理可以主动向用户推荐感兴趣的信息项。信息代理可以通过上下文敏感文本挖掘来获取信息检索的上下文知识。上下文敏感文本挖掘带来的归纳能力与信念修正系统提供的非单调推理能力是相辅相成的。本文提出了一种将文本挖掘方法与基于信念修正的自适应信息agent相结合的新方法,以提高agent的学习自主性和预测能力。我们的初步实验表明,符号自适应信息代理优于基于向量空间模型的对应代理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-sensitive text mining and belief revision for intelligent information retrieval on the web
Autonomous information agents alleviate the information overload problem on the Internet. The AGM belief revision framework provides a rigorous formal foundation to develop adaptive information agents. The expressive power of the belief revision logic allows information seekers' changing information preferences and the underlying retrieval contexts to be captured in information agents. By exploiting the relevant retrieval contexts, information agents can proactively recommend interesting information items to their users. Contextual knowledge for information retrieval can be acquired by information agents via context-sensitive text mining. The induction power brought by context-sensitive text mining and the nonmonotonic reasoning capability offered by a belief revision system are complementary to each other. This paper illustrates a novel approach of integrating the proposed text mining method into the belief revision based adaptive information agents to improve the agents' learning autonomy and prediction power. Our initial experiments show that the symbolic adaptive information agents outperform their vector space model based counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信