参数偏微分方程的压缩感知Petrov-Galerkin逼近

Jean-Luc Bouchot, Benjamin Bykowski, H. Rauhut, C. Schwab
{"title":"参数偏微分方程的压缩感知Petrov-Galerkin逼近","authors":"Jean-Luc Bouchot, Benjamin Bykowski, H. Rauhut, C. Schwab","doi":"10.1109/SAMPTA.2015.7148947","DOIUrl":null,"url":null,"abstract":"We consider the computation of parametric solution families of high-dimensional stochastic and parametric PDEs. We review theoretical results on sparsity of polynomial chaos expansions of parametric solutions, and on compressed sensing based collocation methods for their efficient numerical computation. With high probability, these randomized approximations realize best N-term approximation rates afforded by solution sparsity and are free from the curse of dimensionality, both in terms of accuracy and number of samples evaluations (i.e. PDE solves). Through various examples we illustrate the performance of Compressed Sensing Petrov-Galerkin (CSPG) approximations of parametric PDEs, for the computation of (functionals of) solutions of intregral and differential operators on high-dimensional parameter spaces. The CSPG approximations reduce the number of PDE solves, as compared to Monte-Carlo methods, while being likewise nonintrusive, and being “embarassingly parallel”, unlike dimension-adaptive collocation or Galerkin methods.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Compressed sensing Petrov-Galerkin approximations for parametric PDEs\",\"authors\":\"Jean-Luc Bouchot, Benjamin Bykowski, H. Rauhut, C. Schwab\",\"doi\":\"10.1109/SAMPTA.2015.7148947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the computation of parametric solution families of high-dimensional stochastic and parametric PDEs. We review theoretical results on sparsity of polynomial chaos expansions of parametric solutions, and on compressed sensing based collocation methods for their efficient numerical computation. With high probability, these randomized approximations realize best N-term approximation rates afforded by solution sparsity and are free from the curse of dimensionality, both in terms of accuracy and number of samples evaluations (i.e. PDE solves). Through various examples we illustrate the performance of Compressed Sensing Petrov-Galerkin (CSPG) approximations of parametric PDEs, for the computation of (functionals of) solutions of intregral and differential operators on high-dimensional parameter spaces. The CSPG approximations reduce the number of PDE solves, as compared to Monte-Carlo methods, while being likewise nonintrusive, and being “embarassingly parallel”, unlike dimension-adaptive collocation or Galerkin methods.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

研究了高维随机偏微分方程和参数偏微分方程参数解族的计算。我们回顾了参数解的多项式混沌展开的稀疏性理论成果,以及基于压缩感知的配置方法的高效数值计算。在高概率下,这些随机化近似实现了由解稀疏性提供的最佳n项近似率,并且在精度和样本评估(即PDE解)数量方面都不受维度诅咒的影响。通过不同的例子,我们说明了压缩感知petrv - galerkin (CSPG)逼近参数偏微分方程的性能,用于计算高维参数空间上的积分算子和微分算子解的泛函。与蒙特卡罗方法相比,CSPG近似减少了PDE解的数量,同时同样是非侵入性的,并且是“令人尴尬的并行”,不像维度自适应搭配或伽辽金方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressed sensing Petrov-Galerkin approximations for parametric PDEs
We consider the computation of parametric solution families of high-dimensional stochastic and parametric PDEs. We review theoretical results on sparsity of polynomial chaos expansions of parametric solutions, and on compressed sensing based collocation methods for their efficient numerical computation. With high probability, these randomized approximations realize best N-term approximation rates afforded by solution sparsity and are free from the curse of dimensionality, both in terms of accuracy and number of samples evaluations (i.e. PDE solves). Through various examples we illustrate the performance of Compressed Sensing Petrov-Galerkin (CSPG) approximations of parametric PDEs, for the computation of (functionals of) solutions of intregral and differential operators on high-dimensional parameter spaces. The CSPG approximations reduce the number of PDE solves, as compared to Monte-Carlo methods, while being likewise nonintrusive, and being “embarassingly parallel”, unlike dimension-adaptive collocation or Galerkin methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信