{"title":"采用自适应模糊网络进行分类","authors":"N. Pizzi, A. Demko, W. Pedrycz","doi":"10.1109/NAFIPS.2010.5548179","DOIUrl":null,"url":null,"abstract":"The analysis of feature variance is a common approach used for data interpretation. In the case of pattern classification, however, the transformation of correlated features into a new set of uncorrelated variables must be used with caution, as there is no necessary causal connection between discriminatory power and variance. To compensate for this potential shortcoming, we present a classification method that blends variance analysis with an adaptive fuzzy logic network that identifies the most discriminatory set of uncorrelated variables. We empirically evaluate the effectiveness of this method using a suite of biomedical datasets and comparing its performance against two benchmark classifiers.","PeriodicalId":394892,"journal":{"name":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Classification using an adaptive fuzzy network\",\"authors\":\"N. Pizzi, A. Demko, W. Pedrycz\",\"doi\":\"10.1109/NAFIPS.2010.5548179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of feature variance is a common approach used for data interpretation. In the case of pattern classification, however, the transformation of correlated features into a new set of uncorrelated variables must be used with caution, as there is no necessary causal connection between discriminatory power and variance. To compensate for this potential shortcoming, we present a classification method that blends variance analysis with an adaptive fuzzy logic network that identifies the most discriminatory set of uncorrelated variables. We empirically evaluate the effectiveness of this method using a suite of biomedical datasets and comparing its performance against two benchmark classifiers.\",\"PeriodicalId\":394892,\"journal\":{\"name\":\"2010 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2010.5548179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2010.5548179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The analysis of feature variance is a common approach used for data interpretation. In the case of pattern classification, however, the transformation of correlated features into a new set of uncorrelated variables must be used with caution, as there is no necessary causal connection between discriminatory power and variance. To compensate for this potential shortcoming, we present a classification method that blends variance analysis with an adaptive fuzzy logic network that identifies the most discriminatory set of uncorrelated variables. We empirically evaluate the effectiveness of this method using a suite of biomedical datasets and comparing its performance against two benchmark classifiers.