磁共振图像的动态三维心脏表面模型

B. Delhay, J. Lotjonen, P. Clarysse, T. Katila, I. Magnin
{"title":"磁共振图像的动态三维心脏表面模型","authors":"B. Delhay, J. Lotjonen, P. Clarysse, T. Katila, I. Magnin","doi":"10.1109/CIC.2005.1588127","DOIUrl":null,"url":null,"abstract":"Cardiac 3D+time segmentation and motion estimation are recognized as difficult prerequisite tasks for any quantitative analysis of cardiac images. Some recent algorithms aim to consider a temporal constraint to increase the accuracy of results. To improve the temporal consistency, prior knowledge about cardiac dynamics can be used. In this paper, we propose to build a new Statistical Dynamic Model (SDM) of the heart by learning through a population of healthy individuals. This SDM is composed by a set of semi-landmarks which describe the heart surfaces. For each of them, a mean trajectory and variability around it are derived. The SDM provides a reasonable constraint for a temporally regularized segmentation and motion tracking algorithm","PeriodicalId":239491,"journal":{"name":"Computers in Cardiology, 2005","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A dynamic 3-D cardiac surface model from MR images\",\"authors\":\"B. Delhay, J. Lotjonen, P. Clarysse, T. Katila, I. Magnin\",\"doi\":\"10.1109/CIC.2005.1588127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiac 3D+time segmentation and motion estimation are recognized as difficult prerequisite tasks for any quantitative analysis of cardiac images. Some recent algorithms aim to consider a temporal constraint to increase the accuracy of results. To improve the temporal consistency, prior knowledge about cardiac dynamics can be used. In this paper, we propose to build a new Statistical Dynamic Model (SDM) of the heart by learning through a population of healthy individuals. This SDM is composed by a set of semi-landmarks which describe the heart surfaces. For each of them, a mean trajectory and variability around it are derived. The SDM provides a reasonable constraint for a temporally regularized segmentation and motion tracking algorithm\",\"PeriodicalId\":239491,\"journal\":{\"name\":\"Computers in Cardiology, 2005\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Cardiology, 2005\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.2005.1588127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Cardiology, 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2005.1588127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

心脏3D+时间分割和运动估计被认为是任何心脏图像定量分析的困难先决任务。最近的一些算法旨在考虑时间约束以提高结果的准确性。为了提高时间一致性,可以使用心脏动力学的先验知识。在本文中,我们建议通过健康个体群体的学习建立一个新的心脏统计动态模型(SDM)。该SDM由一组描述心脏表面的半地标组成。对于它们中的每一个,推导出平均轨迹及其周围的可变性。SDM为时间正则化分割和运动跟踪算法提供了合理的约束
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dynamic 3-D cardiac surface model from MR images
Cardiac 3D+time segmentation and motion estimation are recognized as difficult prerequisite tasks for any quantitative analysis of cardiac images. Some recent algorithms aim to consider a temporal constraint to increase the accuracy of results. To improve the temporal consistency, prior knowledge about cardiac dynamics can be used. In this paper, we propose to build a new Statistical Dynamic Model (SDM) of the heart by learning through a population of healthy individuals. This SDM is composed by a set of semi-landmarks which describe the heart surfaces. For each of them, a mean trajectory and variability around it are derived. The SDM provides a reasonable constraint for a temporally regularized segmentation and motion tracking algorithm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信