基于改进x均值聚类的发射器识别

Y. Javed, A. Bhatti
{"title":"基于改进x均值聚类的发射器识别","authors":"Y. Javed, A. Bhatti","doi":"10.1109/ICET.2005.1558907","DOIUrl":null,"url":null,"abstract":"This paper presents a new algorithm to divide multidimensional data into clusters. It enhances the K-means clustering algorithm (Linde-Buzo-Grey) so that the number of clusters is determined at run time. The paper uses radar classification problem as an example application. Most of naturally existing processes possess Gaussian distribution because of central limit theorem. This paper assumes that parameters of radars are Gaussian. Chi-squared test for goodness of fit is used far evaluating the hypothesized distribution from sampled data. The data is divided and output of chi-squared test is used to decide whether to carry on sub-clustering or not. Test results on simulated data are shown to demonstrate the working of algorithm.","PeriodicalId":222828,"journal":{"name":"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Emitter recognition based on modified X-means clustering\",\"authors\":\"Y. Javed, A. Bhatti\",\"doi\":\"10.1109/ICET.2005.1558907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new algorithm to divide multidimensional data into clusters. It enhances the K-means clustering algorithm (Linde-Buzo-Grey) so that the number of clusters is determined at run time. The paper uses radar classification problem as an example application. Most of naturally existing processes possess Gaussian distribution because of central limit theorem. This paper assumes that parameters of radars are Gaussian. Chi-squared test for goodness of fit is used far evaluating the hypothesized distribution from sampled data. The data is divided and output of chi-squared test is used to decide whether to carry on sub-clustering or not. Test results on simulated data are shown to demonstrate the working of algorithm.\",\"PeriodicalId\":222828,\"journal\":{\"name\":\"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICET.2005.1558907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2005.1558907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种新的多维数据聚类划分算法。它增强了K-means聚类算法(Linde-Buzo-Grey),以便在运行时确定聚类的数量。本文以雷达分类问题为例进行了应用。由于中心极限定理的存在,大多数自然存在的过程都具有高斯分布。本文假设雷达参数是高斯分布的。拟合优度采用卡方检验来评价抽样数据的假设分布。对数据进行分割,用卡方检验的输出来决定是否进行子聚类。仿真数据的测试结果验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emitter recognition based on modified X-means clustering
This paper presents a new algorithm to divide multidimensional data into clusters. It enhances the K-means clustering algorithm (Linde-Buzo-Grey) so that the number of clusters is determined at run time. The paper uses radar classification problem as an example application. Most of naturally existing processes possess Gaussian distribution because of central limit theorem. This paper assumes that parameters of radars are Gaussian. Chi-squared test for goodness of fit is used far evaluating the hypothesized distribution from sampled data. The data is divided and output of chi-squared test is used to decide whether to carry on sub-clustering or not. Test results on simulated data are shown to demonstrate the working of algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信