基于凹n方凸形木材图像的质量评价

Risnandar, E. Prakasa, I. M. Erwin
{"title":"基于凹n方凸形木材图像的质量评价","authors":"Risnandar, E. Prakasa, I. M. Erwin","doi":"10.1109/ICoICT49345.2020.9166302","DOIUrl":null,"url":null,"abstract":"We make an offer of a state-of-the-art method of the deep salient wood image-based quality assessment (DS-WIQA) for no-reference image appraisal. We explore a five-layer deep convolutional neural network (DCNN) for the salient wood image map. The DS-WIQA uses the concave n-square method. The outcomes allow that DS-WIQA model has a greater achievement on Zenodo and Lignoindo datasets, respectively. We appraise a salient wood image map by extracting in small wood image patches. The DS-WIQA has an admirable performance of other recent methods on Zenodo and Lignoindo datasets, respectively. DS-WIQA outdoes other recent techniques by 14.29% and 19.96% more advanced than other techniques with respect to SROCC and LCC measurement, respectively. DS-WIQA shows up to be more significant than the other DCNN methods.","PeriodicalId":113108,"journal":{"name":"2020 8th International Conference on Information and Communication Technology (ICoICT)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Concave n-Square Salient Wood Image-based Quality Assessment\",\"authors\":\"Risnandar, E. Prakasa, I. M. Erwin\",\"doi\":\"10.1109/ICoICT49345.2020.9166302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We make an offer of a state-of-the-art method of the deep salient wood image-based quality assessment (DS-WIQA) for no-reference image appraisal. We explore a five-layer deep convolutional neural network (DCNN) for the salient wood image map. The DS-WIQA uses the concave n-square method. The outcomes allow that DS-WIQA model has a greater achievement on Zenodo and Lignoindo datasets, respectively. We appraise a salient wood image map by extracting in small wood image patches. The DS-WIQA has an admirable performance of other recent methods on Zenodo and Lignoindo datasets, respectively. DS-WIQA outdoes other recent techniques by 14.29% and 19.96% more advanced than other techniques with respect to SROCC and LCC measurement, respectively. DS-WIQA shows up to be more significant than the other DCNN methods.\",\"PeriodicalId\":113108,\"journal\":{\"name\":\"2020 8th International Conference on Information and Communication Technology (ICoICT)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th International Conference on Information and Communication Technology (ICoICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICoICT49345.2020.9166302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Information and Communication Technology (ICoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoICT49345.2020.9166302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提供最先进的深度突出木材图像质量评估方法(DS-WIQA),用于无参考图像评估。我们探索了一种五层深度卷积神经网络(DCNN)用于显著性木材图像映射。DS-WIQA使用凹n平方方法。结果表明,DS-WIQA模型分别在Zenodo和Lignoindo数据集上取得了更大的成就。我们通过提取小块木材图像来评估显著性木材图像地图。DS-WIQA分别在Zenodo和Lignoindo数据集上具有令人钦佩的性能。DS-WIQA在SROCC和LCC测量方面分别比其他技术先进14.29%和19.96%。DS-WIQA比其他DCNN方法更有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Concave n-Square Salient Wood Image-based Quality Assessment
We make an offer of a state-of-the-art method of the deep salient wood image-based quality assessment (DS-WIQA) for no-reference image appraisal. We explore a five-layer deep convolutional neural network (DCNN) for the salient wood image map. The DS-WIQA uses the concave n-square method. The outcomes allow that DS-WIQA model has a greater achievement on Zenodo and Lignoindo datasets, respectively. We appraise a salient wood image map by extracting in small wood image patches. The DS-WIQA has an admirable performance of other recent methods on Zenodo and Lignoindo datasets, respectively. DS-WIQA outdoes other recent techniques by 14.29% and 19.96% more advanced than other techniques with respect to SROCC and LCC measurement, respectively. DS-WIQA shows up to be more significant than the other DCNN methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信