C. Liao, Meng-Yin Hsu, Y. Chih, Jonathan Chang, Y. King, C. Lin
{"title":"零静态功率4T SRAM,具有自抑制电阻开关负载,采用纯CMOS逻辑工艺","authors":"C. Liao, Meng-Yin Hsu, Y. Chih, Jonathan Chang, Y. King, C. Lin","doi":"10.1109/IEDM.2016.7838432","DOIUrl":null,"url":null,"abstract":"A full logic compatible 4T2R nonvolatile Static Random Access Memory (nv-SRAM) is successfully demonstrated in pure 40nm CMOS logic process. This non-volatile SRAM consists of two STI RRAMs embedded inside the 4T SRAM with minimal area penalty and full logic compatibility. Data is accessed through SRAM cells, and stored by switching one of the loading RRAMs by an unique self-inhibit feature. With this embedded STI RRAM storage nodes, data can be held under power-off mode with zero static power.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Zero static-power 4T SRAM with self-inhibit resistive switching load by pure CMOS logic process\",\"authors\":\"C. Liao, Meng-Yin Hsu, Y. Chih, Jonathan Chang, Y. King, C. Lin\",\"doi\":\"10.1109/IEDM.2016.7838432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A full logic compatible 4T2R nonvolatile Static Random Access Memory (nv-SRAM) is successfully demonstrated in pure 40nm CMOS logic process. This non-volatile SRAM consists of two STI RRAMs embedded inside the 4T SRAM with minimal area penalty and full logic compatibility. Data is accessed through SRAM cells, and stored by switching one of the loading RRAMs by an unique self-inhibit feature. With this embedded STI RRAM storage nodes, data can be held under power-off mode with zero static power.\",\"PeriodicalId\":186544,\"journal\":{\"name\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2016.7838432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zero static-power 4T SRAM with self-inhibit resistive switching load by pure CMOS logic process
A full logic compatible 4T2R nonvolatile Static Random Access Memory (nv-SRAM) is successfully demonstrated in pure 40nm CMOS logic process. This non-volatile SRAM consists of two STI RRAMs embedded inside the 4T SRAM with minimal area penalty and full logic compatibility. Data is accessed through SRAM cells, and stored by switching one of the loading RRAMs by an unique self-inhibit feature. With this embedded STI RRAM storage nodes, data can be held under power-off mode with zero static power.