在阱尺寸和杂质位置的影响下,InN/AlN量子阱中的激子态和光磁化率

F. Jabouti, Haddou El Ghazi, R. En-nadir, I. Zorkani, A. Jorio
{"title":"在阱尺寸和杂质位置的影响下,InN/AlN量子阱中的激子态和光磁化率","authors":"F. Jabouti, Haddou El Ghazi, R. En-nadir, I. Zorkani, A. Jorio","doi":"10.21467/anr.4.1.1-9","DOIUrl":null,"url":null,"abstract":"Based on the finite difference method, linear optical susceptibility, photoluminescence peak and binding energies of three first states of an exciton trapped by a positive charge donor-impurity ( ) confined in InN/AlN quantum well are investigated in terms of well size and impurity position. The electron, heavy hole free and bound excitons allowed eigen-values and corresponding eigen-functions are obtained numerically by solving one-dimensional time-independent Schrödinger equation. Within the parabolic band and effective mass approximations, the calculations are made considering the coupling of the electron in the n-th conduction subband and the heavy hole in the m-th valence subband under the impacts of the well size and impurity position. The obtained results show clearly that the energy, binding energy and photoluminescence peak energy show a decreasing behavior according to well size for both free and bound cases. Moreover, the optical susceptibility associated to exciton transition is strongly red-shift (blue-shifted) with enhancing the well size (impurity position).","PeriodicalId":185865,"journal":{"name":"Advanced Nano Research","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Excitonic States and Related Optical Susceptibility in InN/AlN Quantum Well Under the Effects of the Well Size and Impurity Position\",\"authors\":\"F. Jabouti, Haddou El Ghazi, R. En-nadir, I. Zorkani, A. Jorio\",\"doi\":\"10.21467/anr.4.1.1-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the finite difference method, linear optical susceptibility, photoluminescence peak and binding energies of three first states of an exciton trapped by a positive charge donor-impurity ( ) confined in InN/AlN quantum well are investigated in terms of well size and impurity position. The electron, heavy hole free and bound excitons allowed eigen-values and corresponding eigen-functions are obtained numerically by solving one-dimensional time-independent Schrödinger equation. Within the parabolic band and effective mass approximations, the calculations are made considering the coupling of the electron in the n-th conduction subband and the heavy hole in the m-th valence subband under the impacts of the well size and impurity position. The obtained results show clearly that the energy, binding energy and photoluminescence peak energy show a decreasing behavior according to well size for both free and bound cases. Moreover, the optical susceptibility associated to exciton transition is strongly red-shift (blue-shifted) with enhancing the well size (impurity position).\",\"PeriodicalId\":185865,\"journal\":{\"name\":\"Advanced Nano Research\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nano Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21467/anr.4.1.1-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nano Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21467/anr.4.1.1-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于有限差分方法,研究了在InN/AlN量子阱中被正电荷供体-杂质()捕获的激子的线性光学磁化率、光致发光峰和三个第一态结合能与阱大小和杂质位置的关系。通过求解一维时间无关Schrödinger方程,得到了电子、重空穴自由激子和束缚激子的允许本征值和相应的本征函数。在抛物带和有效质量近似内,考虑了在阱尺寸和杂质位置的影响下,第n导子带中的电子和第m价子带中的重空穴的耦合,进行了计算。得到的结果清楚地表明,在自由和束缚情况下,能量、结合能和光致发光峰值能均随阱尺寸的减小而减小。此外,随着阱尺寸(杂质位置)的增大,与激子跃迁相关的光磁化率发生了强烈的红移(蓝移)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Excitonic States and Related Optical Susceptibility in InN/AlN Quantum Well Under the Effects of the Well Size and Impurity Position
Based on the finite difference method, linear optical susceptibility, photoluminescence peak and binding energies of three first states of an exciton trapped by a positive charge donor-impurity ( ) confined in InN/AlN quantum well are investigated in terms of well size and impurity position. The electron, heavy hole free and bound excitons allowed eigen-values and corresponding eigen-functions are obtained numerically by solving one-dimensional time-independent Schrödinger equation. Within the parabolic band and effective mass approximations, the calculations are made considering the coupling of the electron in the n-th conduction subband and the heavy hole in the m-th valence subband under the impacts of the well size and impurity position. The obtained results show clearly that the energy, binding energy and photoluminescence peak energy show a decreasing behavior according to well size for both free and bound cases. Moreover, the optical susceptibility associated to exciton transition is strongly red-shift (blue-shifted) with enhancing the well size (impurity position).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信