利用灰狼算法和混合神经网络AI-MPPT算法优化非均匀辐照下单机光伏系统的性能

Mema M. Eshak, Mohamed A. Khafagy, P. Makeen, S. Abdellatif
{"title":"利用灰狼算法和混合神经网络AI-MPPT算法优化非均匀辐照下单机光伏系统的性能","authors":"Mema M. Eshak, Mohamed A. Khafagy, P. Makeen, S. Abdellatif","doi":"10.1109/NILES50944.2020.9257965","DOIUrl":null,"url":null,"abstract":"This paper introduces an improved gray-wolf optimization technique (EGWO) for a photovoltaic (PV) stand-alone system. The fundamental objective is to study non-uniform solar irradiance power mismatches in PV modules through modelling maximum power point tracker (MPPT) for increasing PV power output. An EGWO-MPPT detection algorithm for promoting the global peak between the multiple peaks is implemented, seeking for the optimum maximum energy from the PV system. Furthermore, a neural network-based MPPT optimizer has been modeled as a benchmark for our proposed system, showing the trade-off between time response and accuracy under a non-uniform irradiance profile.","PeriodicalId":253090,"journal":{"name":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimizing the performance of a stand-alone PV system under non-uniform irradiance using Gray-Wolf and hybrid neural network AI-MPPT algorithms\",\"authors\":\"Mema M. Eshak, Mohamed A. Khafagy, P. Makeen, S. Abdellatif\",\"doi\":\"10.1109/NILES50944.2020.9257965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an improved gray-wolf optimization technique (EGWO) for a photovoltaic (PV) stand-alone system. The fundamental objective is to study non-uniform solar irradiance power mismatches in PV modules through modelling maximum power point tracker (MPPT) for increasing PV power output. An EGWO-MPPT detection algorithm for promoting the global peak between the multiple peaks is implemented, seeking for the optimum maximum energy from the PV system. Furthermore, a neural network-based MPPT optimizer has been modeled as a benchmark for our proposed system, showing the trade-off between time response and accuracy under a non-uniform irradiance profile.\",\"PeriodicalId\":253090,\"journal\":{\"name\":\"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NILES50944.2020.9257965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NILES50944.2020.9257965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了一种针对光伏单机系统的改进灰狼优化技术。本文的基本目标是通过建模最大功率点跟踪器(MPPT)来研究光伏组件中的非均匀太阳辐照度功率失配,从而提高光伏发电功率输出。实现了在多个峰值之间提升全局峰值的EGWO-MPPT检测算法,从光伏系统中寻求最优的最大能量。此外,基于神经网络的MPPT优化器已被建模为我们提出的系统的基准,显示了在非均匀辐照剖面下时间响应和精度之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing the performance of a stand-alone PV system under non-uniform irradiance using Gray-Wolf and hybrid neural network AI-MPPT algorithms
This paper introduces an improved gray-wolf optimization technique (EGWO) for a photovoltaic (PV) stand-alone system. The fundamental objective is to study non-uniform solar irradiance power mismatches in PV modules through modelling maximum power point tracker (MPPT) for increasing PV power output. An EGWO-MPPT detection algorithm for promoting the global peak between the multiple peaks is implemented, seeking for the optimum maximum energy from the PV system. Furthermore, a neural network-based MPPT optimizer has been modeled as a benchmark for our proposed system, showing the trade-off between time response and accuracy under a non-uniform irradiance profile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信