基于近似间隔的时间依赖性:复杂性景观

P. Sala
{"title":"基于近似间隔的时间依赖性:复杂性景观","authors":"P. Sala","doi":"10.1109/TIME.2014.20","DOIUrl":null,"url":null,"abstract":"Temporal functional dependencies (TFDs) add valid time to classical functional dependencies (FDs) in order to express data integrity constraints over the flow of time. If the temporal dimension adopted is an interval, we have to deal with interval-based temporal functional dependencies (ITFDs for short), which consider different interval relations between valid times of related tuples. The related approximate problem is when we want to check if our data satisfy, without any constraint for the schema, a given ITFD under a given error threshold 0 ≤ d ≤ 1. This can be rephrased as: given a relation instance r, is it possible to delete at most c · |r| tuples from it in such a way that the resulting instance satisfies the given ITFD? This optimization problem, ITFD-Approx for short, may represent a way to discover (data mining) important dependencies among attribute values in a database as well as a way to control data consistency. In this paper we analyze the complexity of problem ITFD-Approx restricting ourselves to Allen's interval relations: we will see how the complexity of such a problem may significantly change, depending on the considered interval relation.","PeriodicalId":309715,"journal":{"name":"2014 21st International Symposium on Temporal Representation and Reasoning","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Approximate Interval-Based Temporal Dependencies: The Complexity Landscape\",\"authors\":\"P. Sala\",\"doi\":\"10.1109/TIME.2014.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal functional dependencies (TFDs) add valid time to classical functional dependencies (FDs) in order to express data integrity constraints over the flow of time. If the temporal dimension adopted is an interval, we have to deal with interval-based temporal functional dependencies (ITFDs for short), which consider different interval relations between valid times of related tuples. The related approximate problem is when we want to check if our data satisfy, without any constraint for the schema, a given ITFD under a given error threshold 0 ≤ d ≤ 1. This can be rephrased as: given a relation instance r, is it possible to delete at most c · |r| tuples from it in such a way that the resulting instance satisfies the given ITFD? This optimization problem, ITFD-Approx for short, may represent a way to discover (data mining) important dependencies among attribute values in a database as well as a way to control data consistency. In this paper we analyze the complexity of problem ITFD-Approx restricting ourselves to Allen's interval relations: we will see how the complexity of such a problem may significantly change, depending on the considered interval relation.\",\"PeriodicalId\":309715,\"journal\":{\"name\":\"2014 21st International Symposium on Temporal Representation and Reasoning\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 21st International Symposium on Temporal Representation and Reasoning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIME.2014.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21st International Symposium on Temporal Representation and Reasoning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIME.2014.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

时间功能依赖(tfd)在经典功能依赖(fd)的基础上添加有效时间,以表示时间流上的数据完整性约束。如果采用的时间维度是一个区间,我们必须处理基于区间的时间功能依赖关系(简称itfd),它考虑相关元组的有效时间之间的不同间隔关系。相关的近似问题是,当我们想要检查我们的数据是否满足给定错误阈值0≤d≤1下的给定ITFD,而不受模式的任何约束时。这可以重新表述为:给定一个关系实例r,是否有可能从其中删除最多c·|r|元组,从而使结果实例满足给定的ITFD?这个优化问题(简称itfd - approximate)可能代表了一种发现(数据挖掘)数据库中属性值之间重要依赖关系的方法,以及控制数据一致性的方法。在本文中,我们分析了itfd问题的复杂性-近似地将自己限制在Allen的区间关系中:我们将看到这样一个问题的复杂性如何根据所考虑的区间关系而显着变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Interval-Based Temporal Dependencies: The Complexity Landscape
Temporal functional dependencies (TFDs) add valid time to classical functional dependencies (FDs) in order to express data integrity constraints over the flow of time. If the temporal dimension adopted is an interval, we have to deal with interval-based temporal functional dependencies (ITFDs for short), which consider different interval relations between valid times of related tuples. The related approximate problem is when we want to check if our data satisfy, without any constraint for the schema, a given ITFD under a given error threshold 0 ≤ d ≤ 1. This can be rephrased as: given a relation instance r, is it possible to delete at most c · |r| tuples from it in such a way that the resulting instance satisfies the given ITFD? This optimization problem, ITFD-Approx for short, may represent a way to discover (data mining) important dependencies among attribute values in a database as well as a way to control data consistency. In this paper we analyze the complexity of problem ITFD-Approx restricting ourselves to Allen's interval relations: we will see how the complexity of such a problem may significantly change, depending on the considered interval relation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信