Zn-Li-Mg合金在剧烈塑性扭转变形下的组织相变

V. Sitdikov, O. Kulyasova, G. Sitdikova, R. Islamgaliev, Yu. Zheng
{"title":"Zn-Li-Mg合金在剧烈塑性扭转变形下的组织相变","authors":"V. Sitdikov, O. Kulyasova, G. Sitdikova, R. Islamgaliev, Yu. Zheng","doi":"10.18323/2782-4039-2022-3-2-44-55","DOIUrl":null,"url":null,"abstract":"In this paper, using the X-ray scattering method, the authors found the similaritues and differences in the structural-phase transformations in a Zn–Li–Mg alloy under the artificial and dynamic aging. The artificial aging (AA) of the alloy was implemented at a temperature of 300 ºС for 24 h, while the dynamic aging (DA) was performed through high-pressure torsion at room temperature for a few minutes. For the first time, using X-ray phase analysis, the authors identified the type and parameters of the LiZn2 phase crystal lattice (Pmmm, a=0.48635 nm, b=1.11021 nm, c=0.43719 nm, α=β=γ=90º) and the β-LiZn4 phase (P63/mmc, a=b=0.279868 nm, c=0.438598 nm, α=β=90º, γ=120º) to the eutectics in specified conditions. The study found that SPD leads to intensive precipitation of Zn particles in the primary β-LiZn4 phase, and β-LiZn4 particles precipitation in the Zn eutectics phase. While analyzing the diffraction patterns, the authors estimated the lattice parameter, the size distribution of coherent scattering regions, the averaged dislocation density, and the fraction of edge and screw dislocations after AA and DA. For the first time, by small-angle X-ray scattering, the authors identified the quantitative characteristics of the size, shape, and nature of the bimodal precipitate distribution in the above-mentioned conditions. In particular, it was found that fine Zn precipitates in the form of needles of 8 nm in diameter and up to 27 nm in length and coarse Zn precipitates in the form of rods of 460 nm in diameter and up to 1000 nm in length are produced in the alloy after AA. In the case of DA, fine Zn precipitates of a primarily spherical shape with an average diameter of 20 nm and coarse Zn precipitates, which formed in the primary β-LiZn4 phase a network with a cell diameter of 200–300 nm and wall thickness of 62 nm are produced in the Zn–Li–Mg alloy.","PeriodicalId":251458,"journal":{"name":"Frontier materials & technologies","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural-phase transformations in the Zn–Li–Mg alloy exposed to the severe plastic torsion deformation\",\"authors\":\"V. Sitdikov, O. Kulyasova, G. Sitdikova, R. Islamgaliev, Yu. Zheng\",\"doi\":\"10.18323/2782-4039-2022-3-2-44-55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, using the X-ray scattering method, the authors found the similaritues and differences in the structural-phase transformations in a Zn–Li–Mg alloy under the artificial and dynamic aging. The artificial aging (AA) of the alloy was implemented at a temperature of 300 ºС for 24 h, while the dynamic aging (DA) was performed through high-pressure torsion at room temperature for a few minutes. For the first time, using X-ray phase analysis, the authors identified the type and parameters of the LiZn2 phase crystal lattice (Pmmm, a=0.48635 nm, b=1.11021 nm, c=0.43719 nm, α=β=γ=90º) and the β-LiZn4 phase (P63/mmc, a=b=0.279868 nm, c=0.438598 nm, α=β=90º, γ=120º) to the eutectics in specified conditions. The study found that SPD leads to intensive precipitation of Zn particles in the primary β-LiZn4 phase, and β-LiZn4 particles precipitation in the Zn eutectics phase. While analyzing the diffraction patterns, the authors estimated the lattice parameter, the size distribution of coherent scattering regions, the averaged dislocation density, and the fraction of edge and screw dislocations after AA and DA. For the first time, by small-angle X-ray scattering, the authors identified the quantitative characteristics of the size, shape, and nature of the bimodal precipitate distribution in the above-mentioned conditions. In particular, it was found that fine Zn precipitates in the form of needles of 8 nm in diameter and up to 27 nm in length and coarse Zn precipitates in the form of rods of 460 nm in diameter and up to 1000 nm in length are produced in the alloy after AA. In the case of DA, fine Zn precipitates of a primarily spherical shape with an average diameter of 20 nm and coarse Zn precipitates, which formed in the primary β-LiZn4 phase a network with a cell diameter of 200–300 nm and wall thickness of 62 nm are produced in the Zn–Li–Mg alloy.\",\"PeriodicalId\":251458,\"journal\":{\"name\":\"Frontier materials & technologies\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontier materials & technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18323/2782-4039-2022-3-2-44-55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontier materials & technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18323/2782-4039-2022-3-2-44-55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用x射线散射方法,发现了人工时效和动态时效下Zn-Li-Mg合金组织相变的异同。在300ºС温度下对合金进行24 h的人工时效(AA),在室温下进行几分钟的高压扭转动态时效(DA)。利用x射线相分析首次确定了在特定条件下lizzn2相的晶格类型和参数(Pmmm, a=0.48635 nm, b=1.11021 nm, c=0.43719 nm, α=β=γ=90º)和β- lizzn4相(P63/mmc, a=b=0.279868 nm, c=0.438598 nm, α=β=90º,γ=120º)。研究发现SPD导致Zn颗粒在初生相β-LiZn4中强烈析出,β-LiZn4颗粒在Zn共晶相中析出。在分析衍射图的同时,作者估计了AA和DA后的晶格参数、相干散射区的尺寸分布、平均位错密度以及边位错和螺旋位错的比例。通过小角度x射线散射,首次确定了上述条件下双峰相分布的大小、形状和性质的定量特征。结果表明,AA后合金中形成了直径8 nm、长度27 nm的细针状Zn析出物和直径460 nm、长度1000 nm的粗棒状Zn析出物。在DA条件下,Zn - li - mg合金中主要形成平均直径为20 nm的球形细小Zn析出物和粗Zn析出物,这些粗Zn析出物在初生β-LiZn4相中形成一个胞径为200-300 nm、壁厚为62 nm的网状结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural-phase transformations in the Zn–Li–Mg alloy exposed to the severe plastic torsion deformation
In this paper, using the X-ray scattering method, the authors found the similaritues and differences in the structural-phase transformations in a Zn–Li–Mg alloy under the artificial and dynamic aging. The artificial aging (AA) of the alloy was implemented at a temperature of 300 ºС for 24 h, while the dynamic aging (DA) was performed through high-pressure torsion at room temperature for a few minutes. For the first time, using X-ray phase analysis, the authors identified the type and parameters of the LiZn2 phase crystal lattice (Pmmm, a=0.48635 nm, b=1.11021 nm, c=0.43719 nm, α=β=γ=90º) and the β-LiZn4 phase (P63/mmc, a=b=0.279868 nm, c=0.438598 nm, α=β=90º, γ=120º) to the eutectics in specified conditions. The study found that SPD leads to intensive precipitation of Zn particles in the primary β-LiZn4 phase, and β-LiZn4 particles precipitation in the Zn eutectics phase. While analyzing the diffraction patterns, the authors estimated the lattice parameter, the size distribution of coherent scattering regions, the averaged dislocation density, and the fraction of edge and screw dislocations after AA and DA. For the first time, by small-angle X-ray scattering, the authors identified the quantitative characteristics of the size, shape, and nature of the bimodal precipitate distribution in the above-mentioned conditions. In particular, it was found that fine Zn precipitates in the form of needles of 8 nm in diameter and up to 27 nm in length and coarse Zn precipitates in the form of rods of 460 nm in diameter and up to 1000 nm in length are produced in the alloy after AA. In the case of DA, fine Zn precipitates of a primarily spherical shape with an average diameter of 20 nm and coarse Zn precipitates, which formed in the primary β-LiZn4 phase a network with a cell diameter of 200–300 nm and wall thickness of 62 nm are produced in the Zn–Li–Mg alloy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信