基于机器学习的虚假招聘检测系统

Arryan Sinha, Dr. G. Suseela
{"title":"基于机器学习的虚假招聘检测系统","authors":"Arryan Sinha, Dr. G. Suseela","doi":"10.54473/ijtret.2022.6103","DOIUrl":null,"url":null,"abstract":"In order to avoid fraudulent online job postings, we use an automated tool that uses natural language processing (NLP) and classification techniques based on machine learning are suggested on paper. Using the NLP library SpaCy in python we have performed various analyzes such as semantic, syntactic, tokenization of the task profile extracting features and using a machine learning algorithm called Random Forest we have predicted its accuracy to classify a job profile as Real or Fake.","PeriodicalId":127327,"journal":{"name":"International Journal Of Trendy Research In Engineering And Technology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MACHINE LEARNING-BASED FAKE JOB RECRUITMENT DETECTION SYSTEM\",\"authors\":\"Arryan Sinha, Dr. G. Suseela\",\"doi\":\"10.54473/ijtret.2022.6103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to avoid fraudulent online job postings, we use an automated tool that uses natural language processing (NLP) and classification techniques based on machine learning are suggested on paper. Using the NLP library SpaCy in python we have performed various analyzes such as semantic, syntactic, tokenization of the task profile extracting features and using a machine learning algorithm called Random Forest we have predicted its accuracy to classify a job profile as Real or Fake.\",\"PeriodicalId\":127327,\"journal\":{\"name\":\"International Journal Of Trendy Research In Engineering And Technology\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal Of Trendy Research In Engineering And Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54473/ijtret.2022.6103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal Of Trendy Research In Engineering And Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54473/ijtret.2022.6103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了避免欺诈性的在线招聘信息,我们使用了一种使用自然语言处理(NLP)的自动化工具,并在论文中提出了基于机器学习的分类技术。使用python中的NLP库SpaCy,我们执行了各种分析,如语义,语法,任务概要的标记化提取特征,并使用称为Random Forest的机器学习算法,我们预测了将工作概要分类为真实或虚假的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MACHINE LEARNING-BASED FAKE JOB RECRUITMENT DETECTION SYSTEM
In order to avoid fraudulent online job postings, we use an automated tool that uses natural language processing (NLP) and classification techniques based on machine learning are suggested on paper. Using the NLP library SpaCy in python we have performed various analyzes such as semantic, syntactic, tokenization of the task profile extracting features and using a machine learning algorithm called Random Forest we have predicted its accuracy to classify a job profile as Real or Fake.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信