浮点数求和的并行算法

M. Goodrich, A. Eldawy
{"title":"浮点数求和的并行算法","authors":"M. Goodrich, A. Eldawy","doi":"10.1145/2935764.2935779","DOIUrl":null,"url":null,"abstract":"The problem of exactly summing n floating-point numbers is a fundamental problem that has many applications in large-scale simulations and computational geometry. Unfortunately, due to the round-off error in standard floating-point operations, this problem becomes very challenging. Moreover, all existing solutions rely on sequential algorithms which cannot scale to the huge datasets that need to be processed. In this paper, we provide several efficient parallel algorithms for summing n floating point numbers, so as to produce a faithfully rounded floating-point representation of the sum. We present algorithms in PRAM, external-memory, and MapReduce models, and we also provide an experimental analysis of our MapReduce algorithms, due to their simplicity and practical efficiency.","PeriodicalId":346939,"journal":{"name":"Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parallel Algorithms for Summing Floating-Point Numbers\",\"authors\":\"M. Goodrich, A. Eldawy\",\"doi\":\"10.1145/2935764.2935779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of exactly summing n floating-point numbers is a fundamental problem that has many applications in large-scale simulations and computational geometry. Unfortunately, due to the round-off error in standard floating-point operations, this problem becomes very challenging. Moreover, all existing solutions rely on sequential algorithms which cannot scale to the huge datasets that need to be processed. In this paper, we provide several efficient parallel algorithms for summing n floating point numbers, so as to produce a faithfully rounded floating-point representation of the sum. We present algorithms in PRAM, external-memory, and MapReduce models, and we also provide an experimental analysis of our MapReduce algorithms, due to their simplicity and practical efficiency.\",\"PeriodicalId\":346939,\"journal\":{\"name\":\"Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2935764.2935779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2935764.2935779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

精确求和n个浮点数的问题是在大规模模拟和计算几何中有许多应用的一个基本问题。不幸的是,由于标准浮点运算中的舍入错误,这个问题变得非常具有挑战性。此外,所有现有的解决方案都依赖于顺序算法,无法扩展到需要处理的庞大数据集。在本文中,我们提供了几种有效的并行算法来求和n个浮点数,从而产生一个忠实的四舍五入的浮点表示。我们介绍了PRAM、外部存储器和MapReduce模型中的算法,并对我们的MapReduce算法进行了实验分析,因为它们简单而实用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Algorithms for Summing Floating-Point Numbers
The problem of exactly summing n floating-point numbers is a fundamental problem that has many applications in large-scale simulations and computational geometry. Unfortunately, due to the round-off error in standard floating-point operations, this problem becomes very challenging. Moreover, all existing solutions rely on sequential algorithms which cannot scale to the huge datasets that need to be processed. In this paper, we provide several efficient parallel algorithms for summing n floating point numbers, so as to produce a faithfully rounded floating-point representation of the sum. We present algorithms in PRAM, external-memory, and MapReduce models, and we also provide an experimental analysis of our MapReduce algorithms, due to their simplicity and practical efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信