实根细化的布尔复杂度

V. Pan, Elias P. Tsigaridas
{"title":"实根细化的布尔复杂度","authors":"V. Pan, Elias P. Tsigaridas","doi":"10.1145/2465506.2465938","DOIUrl":null,"url":null,"abstract":"We assume that a real square-free polynomial <i>A</i> has a degree <i>d</i>, a maximum coefficient bitsize τ and a real root lying in an isolating interval and having no nonreal roots nearby (we quantify this assumption). Then, we combine the <i>Double Exponential Sieve</i> algorithm (also called the <i>Bisection of the Exponents</i>), the bisection, and Newton iteration to decrease the width of this inclusion interval by a factor of <i>t</i>=2<sup>-L</sup>. The algorithm has Boolean complexity Õ<sub>B</sub>(d<sup>2</sup> τ + d L ). Our algorithms support the same complexity bound for the refinement of <i>r</i> roots, for any <i>r ≤ d</i>.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"On the boolean complexity of real root refinement\",\"authors\":\"V. Pan, Elias P. Tsigaridas\",\"doi\":\"10.1145/2465506.2465938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We assume that a real square-free polynomial <i>A</i> has a degree <i>d</i>, a maximum coefficient bitsize τ and a real root lying in an isolating interval and having no nonreal roots nearby (we quantify this assumption). Then, we combine the <i>Double Exponential Sieve</i> algorithm (also called the <i>Bisection of the Exponents</i>), the bisection, and Newton iteration to decrease the width of this inclusion interval by a factor of <i>t</i>=2<sup>-L</sup>. The algorithm has Boolean complexity Õ<sub>B</sub>(d<sup>2</sup> τ + d L ). Our algorithms support the same complexity bound for the refinement of <i>r</i> roots, for any <i>r ≤ d</i>.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465506.2465938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465506.2465938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

我们假设一个实数无平方多项式a的度数为d,最大系数位大小为τ,实数根位于隔离区间内,附近没有非实数根(我们量化了这个假设)。然后,我们将双指数筛算法(也称为指数的二分法)、二分法和牛顿迭代结合起来,将该包含区间的宽度减小t=2-L。该算法具有布尔复杂度ÕB(d2 τ + d L)。对于任何r≤d,我们的算法对r根的细化支持相同的复杂度界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the boolean complexity of real root refinement
We assume that a real square-free polynomial A has a degree d, a maximum coefficient bitsize τ and a real root lying in an isolating interval and having no nonreal roots nearby (we quantify this assumption). Then, we combine the Double Exponential Sieve algorithm (also called the Bisection of the Exponents), the bisection, and Newton iteration to decrease the width of this inclusion interval by a factor of t=2-L. The algorithm has Boolean complexity ÕB(d2 τ + d L ). Our algorithms support the same complexity bound for the refinement of r roots, for any r ≤ d.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信