范围人脸分割:移动设备范围图像中身份验证的人脸检测和分割

R. Findling, Fabian Wenny, Clemens Holzmann, R. Mayrhofer
{"title":"范围人脸分割:移动设备范围图像中身份验证的人脸检测和分割","authors":"R. Findling, Fabian Wenny, Clemens Holzmann, R. Mayrhofer","doi":"10.1145/2536853.2536880","DOIUrl":null,"url":null,"abstract":"Face detection (finding faces of different perspectives in images) is an important task as prerequisite to face recognition. This is especially difficult in the mobile domain, as bad image quality and illumination conditions lead to overall reduced face detection rates. Background information still present in segmented faces and unequally normalized faces further decrease face recognition rates. We present a novel approach to robust single upright face detection and segmentation from different perspectives based on range information (pixel values corresponding to the camera-object distance). We use range template matching for finding the face's coarse position and gradient vector flow (GVF) snakes for precisely segmenting faces. We further evaluate our approach on range faces from the u'smile face database, then perform face recognition using the segmented faces to evaluate and compare our approach with previous research. Results indicate that range template matching might be a good approach to finding a single face; in our tests we achieved an error free detection rate and average recognition rates above 98%/96% for color/range images.","PeriodicalId":135195,"journal":{"name":"Advances in Mobile Multimedia","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Range Face Segmentation: Face Detection and Segmentation for Authentication in Mobile Device Range Images\",\"authors\":\"R. Findling, Fabian Wenny, Clemens Holzmann, R. Mayrhofer\",\"doi\":\"10.1145/2536853.2536880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face detection (finding faces of different perspectives in images) is an important task as prerequisite to face recognition. This is especially difficult in the mobile domain, as bad image quality and illumination conditions lead to overall reduced face detection rates. Background information still present in segmented faces and unequally normalized faces further decrease face recognition rates. We present a novel approach to robust single upright face detection and segmentation from different perspectives based on range information (pixel values corresponding to the camera-object distance). We use range template matching for finding the face's coarse position and gradient vector flow (GVF) snakes for precisely segmenting faces. We further evaluate our approach on range faces from the u'smile face database, then perform face recognition using the segmented faces to evaluate and compare our approach with previous research. Results indicate that range template matching might be a good approach to finding a single face; in our tests we achieved an error free detection rate and average recognition rates above 98%/96% for color/range images.\",\"PeriodicalId\":135195,\"journal\":{\"name\":\"Advances in Mobile Multimedia\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mobile Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2536853.2536880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mobile Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2536853.2536880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人脸检测(在图像中发现不同角度的人脸)是人脸识别的重要前提。这在移动领域尤其困难,因为糟糕的图像质量和照明条件会导致整体人脸检测率降低。分割后的人脸和不均匀归一化后的人脸仍然存在背景信息,进一步降低了人脸识别率。我们提出了一种基于距离信息(对应于相机与目标距离的像素值)的不同角度的鲁棒单直立人脸检测和分割方法。我们使用距离模板匹配来寻找人脸的粗糙位置,使用梯度向量流(GVF)蛇形来精确分割人脸。我们在u’smile人脸数据库中进一步评估我们的方法,然后使用分割的人脸进行人脸识别,并将我们的方法与之前的研究进行评估和比较。结果表明,距离模板匹配可能是寻找单个人脸的好方法;在我们的测试中,我们实现了无错误检测率和平均识别率98%/96%以上的彩色/范围图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Range Face Segmentation: Face Detection and Segmentation for Authentication in Mobile Device Range Images
Face detection (finding faces of different perspectives in images) is an important task as prerequisite to face recognition. This is especially difficult in the mobile domain, as bad image quality and illumination conditions lead to overall reduced face detection rates. Background information still present in segmented faces and unequally normalized faces further decrease face recognition rates. We present a novel approach to robust single upright face detection and segmentation from different perspectives based on range information (pixel values corresponding to the camera-object distance). We use range template matching for finding the face's coarse position and gradient vector flow (GVF) snakes for precisely segmenting faces. We further evaluate our approach on range faces from the u'smile face database, then perform face recognition using the segmented faces to evaluate and compare our approach with previous research. Results indicate that range template matching might be a good approach to finding a single face; in our tests we achieved an error free detection rate and average recognition rates above 98%/96% for color/range images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信