正模偏序集的Kalmbach蕴涵

Kadir Emir, Jan Paseka
{"title":"正模偏序集的Kalmbach蕴涵","authors":"Kadir Emir, Jan Paseka","doi":"10.1109/ISMVL57333.2023.00015","DOIUrl":null,"url":null,"abstract":"We show that for every orthogonal lub-complete poset P = (P,≤,′, 0, 1), we can introduce multiple-valued implications sharing properties with quantum implications presented for orthomodular lattices by Kalmbach. We call them classical implication, Kalmbach implication, and non-tolens implication.If the classical implication satisfies the order property, then the corresponding orthologic becomes classical and vice versa. If the Kalmbach or non-tolens implication meets the order property, then the corresponding orthologic becomes quantum and vice versa. A related result for the modus ponens rule is obtained.","PeriodicalId":419220,"journal":{"name":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kalmbach implication in orthomodular posets\",\"authors\":\"Kadir Emir, Jan Paseka\",\"doi\":\"10.1109/ISMVL57333.2023.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for every orthogonal lub-complete poset P = (P,≤,′, 0, 1), we can introduce multiple-valued implications sharing properties with quantum implications presented for orthomodular lattices by Kalmbach. We call them classical implication, Kalmbach implication, and non-tolens implication.If the classical implication satisfies the order property, then the corresponding orthologic becomes classical and vice versa. If the Kalmbach or non-tolens implication meets the order property, then the corresponding orthologic becomes quantum and vice versa. A related result for the modus ponens rule is obtained.\",\"PeriodicalId\":419220,\"journal\":{\"name\":\"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL57333.2023.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL57333.2023.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了对于每一个正交鲁棒完备偏序集P = (P,≤,',0,1),我们可以引入与Kalmbach给出的正模格的量子蕴涵共享性质的多值蕴涵。我们称它们为经典暗示、卡尔巴赫暗示和非托伦暗示。如果经典蕴涵满足序性质,则相应的正形体成为经典,反之亦然。如果Kalmbach蕴涵或非tolens蕴涵满足序性质,则相应的正正交变为量子,反之亦然。本文还得到了一个与之相关的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kalmbach implication in orthomodular posets
We show that for every orthogonal lub-complete poset P = (P,≤,′, 0, 1), we can introduce multiple-valued implications sharing properties with quantum implications presented for orthomodular lattices by Kalmbach. We call them classical implication, Kalmbach implication, and non-tolens implication.If the classical implication satisfies the order property, then the corresponding orthologic becomes classical and vice versa. If the Kalmbach or non-tolens implication meets the order property, then the corresponding orthologic becomes quantum and vice versa. A related result for the modus ponens rule is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信