w惩罚及其在带稀疏标签的Alpha抠图中的应用

Stephen Tierney, Junbin Gao, Yi Guo
{"title":"w惩罚及其在带稀疏标签的Alpha抠图中的应用","authors":"Stephen Tierney, Junbin Gao, Yi Guo","doi":"10.1109/DICTA.2014.7008132","DOIUrl":null,"url":null,"abstract":"Alpha matting is an ill-posed problem, as such the user must supply dense partial labels for an acceptable solution to be reached. Unfortunately this labelling can be time consuming. In this paper we introduce the w-penalty function, which when incorporated into existing matting techniques allows users to supply extremely sparse input. The formulated objective function encourages driving matte values to 0 and 1. The experiments demonstrate the proposed model outperforms the state-of-the-art KNN matting algorithm. MATLAB code for our proposed method is freely available in the MatteKit package.","PeriodicalId":146695,"journal":{"name":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The W-Penalty and Its Application to Alpha Matting with Sparse Labels\",\"authors\":\"Stephen Tierney, Junbin Gao, Yi Guo\",\"doi\":\"10.1109/DICTA.2014.7008132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alpha matting is an ill-posed problem, as such the user must supply dense partial labels for an acceptable solution to be reached. Unfortunately this labelling can be time consuming. In this paper we introduce the w-penalty function, which when incorporated into existing matting techniques allows users to supply extremely sparse input. The formulated objective function encourages driving matte values to 0 and 1. The experiments demonstrate the proposed model outperforms the state-of-the-art KNN matting algorithm. MATLAB code for our proposed method is freely available in the MatteKit package.\",\"PeriodicalId\":146695,\"journal\":{\"name\":\"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2014.7008132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2014.7008132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Alpha抠图是一个病态问题,因此用户必须提供密集的部分标签才能得到一个可接受的解决方案。不幸的是,这种标签可能很耗时。在本文中,我们引入了w惩罚函数,当将其与现有的抠图技术结合时,用户可以提供极其稀疏的输入。制定的目标函数鼓励将哑光值驱动到0和1。实验表明,该模型优于目前最先进的KNN抠图算法。我们提出的方法的MATLAB代码可以在MatteKit包中免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The W-Penalty and Its Application to Alpha Matting with Sparse Labels
Alpha matting is an ill-posed problem, as such the user must supply dense partial labels for an acceptable solution to be reached. Unfortunately this labelling can be time consuming. In this paper we introduce the w-penalty function, which when incorporated into existing matting techniques allows users to supply extremely sparse input. The formulated objective function encourages driving matte values to 0 and 1. The experiments demonstrate the proposed model outperforms the state-of-the-art KNN matting algorithm. MATLAB code for our proposed method is freely available in the MatteKit package.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信