{"title":"量子配方","authors":"J. Autschbach","doi":"10.2307/j.ctvc77hrx.5","DOIUrl":null,"url":null,"abstract":"Introduction of the postulates of quantum mechanics: Wavefunctions, operators, observables, commutating operators, expectation values, probabilities, Heisenberg uncertainty. The postulates are then used to set up a ‘quantum recipe’, i.e. a straightforward recipe by which to write down the (nonrelativistic) quantum Hamiltonian of a system of particles. This chapter also discusses the representation of quantum operators as matrices, in reference to a set of ‘basis’ functions, and the variation principle. The idea of a particle trajectory must be abandoned in quantum mechanics. Observable properties of a particle correspond to eigenvalues of the associated quantum operators. The chapter concludes with a brief discussion of the Schrodinger’s cat paradox, quantum entanglement, and other oddities.","PeriodicalId":207760,"journal":{"name":"Quantum Theory for Chemical Applications","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Quantum Recipe\",\"authors\":\"J. Autschbach\",\"doi\":\"10.2307/j.ctvc77hrx.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction of the postulates of quantum mechanics: Wavefunctions, operators, observables, commutating operators, expectation values, probabilities, Heisenberg uncertainty. The postulates are then used to set up a ‘quantum recipe’, i.e. a straightforward recipe by which to write down the (nonrelativistic) quantum Hamiltonian of a system of particles. This chapter also discusses the representation of quantum operators as matrices, in reference to a set of ‘basis’ functions, and the variation principle. The idea of a particle trajectory must be abandoned in quantum mechanics. Observable properties of a particle correspond to eigenvalues of the associated quantum operators. The chapter concludes with a brief discussion of the Schrodinger’s cat paradox, quantum entanglement, and other oddities.\",\"PeriodicalId\":207760,\"journal\":{\"name\":\"Quantum Theory for Chemical Applications\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Theory for Chemical Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvc77hrx.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Theory for Chemical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvc77hrx.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Introduction of the postulates of quantum mechanics: Wavefunctions, operators, observables, commutating operators, expectation values, probabilities, Heisenberg uncertainty. The postulates are then used to set up a ‘quantum recipe’, i.e. a straightforward recipe by which to write down the (nonrelativistic) quantum Hamiltonian of a system of particles. This chapter also discusses the representation of quantum operators as matrices, in reference to a set of ‘basis’ functions, and the variation principle. The idea of a particle trajectory must be abandoned in quantum mechanics. Observable properties of a particle correspond to eigenvalues of the associated quantum operators. The chapter concludes with a brief discussion of the Schrodinger’s cat paradox, quantum entanglement, and other oddities.