Yulian Cao, Mengchu Zhou, Wenfeng Li, G. Lodewijks
{"title":"异构粒子群优化算法及其在飞机制造物流中的应用","authors":"Yulian Cao, Mengchu Zhou, Wenfeng Li, G. Lodewijks","doi":"10.1109/ICNSC48988.2020.9238107","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) attracts much attention due to its ability in solving complex practical engineering problems effectively. To further improve its performance, a heterogeneous particle swarm optimizer (HPSO) is proposed in this work. Five widely used benchmark functions are selected to test its efficiency. Furthermore, five state-of-the-art improved PSO variants are selected for a comparisons purpose. The results demonstrate that HPSO is better than the other five algorithms. A logistics problem in aircraft manufacturing is then studied and solved. The results show HPSO's superiority over its tested PSO variants.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Heterogeneous Particle Swarm Optimizer and its Application in Aircraft Manufacturing Logistics\",\"authors\":\"Yulian Cao, Mengchu Zhou, Wenfeng Li, G. Lodewijks\",\"doi\":\"10.1109/ICNSC48988.2020.9238107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle swarm optimization (PSO) attracts much attention due to its ability in solving complex practical engineering problems effectively. To further improve its performance, a heterogeneous particle swarm optimizer (HPSO) is proposed in this work. Five widely used benchmark functions are selected to test its efficiency. Furthermore, five state-of-the-art improved PSO variants are selected for a comparisons purpose. The results demonstrate that HPSO is better than the other five algorithms. A logistics problem in aircraft manufacturing is then studied and solved. The results show HPSO's superiority over its tested PSO variants.\",\"PeriodicalId\":412290,\"journal\":{\"name\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC48988.2020.9238107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heterogeneous Particle Swarm Optimizer and its Application in Aircraft Manufacturing Logistics
Particle swarm optimization (PSO) attracts much attention due to its ability in solving complex practical engineering problems effectively. To further improve its performance, a heterogeneous particle swarm optimizer (HPSO) is proposed in this work. Five widely used benchmark functions are selected to test its efficiency. Furthermore, five state-of-the-art improved PSO variants are selected for a comparisons purpose. The results demonstrate that HPSO is better than the other five algorithms. A logistics problem in aircraft manufacturing is then studied and solved. The results show HPSO's superiority over its tested PSO variants.