最先进的输电扩展规划工具的比较研究

T. Sum-Im, G. Taylor, M. Irving, Y. Song
{"title":"最先进的输电扩展规划工具的比较研究","authors":"T. Sum-Im, G. Taylor, M. Irving, Y. Song","doi":"10.1109/UPEC.2006.367757","DOIUrl":null,"url":null,"abstract":"In this paper, a novel differential evolution algorithm (DEA) is applied directly to the DC power flow based model to solve the transmission expansion planning (TEP) problem. This paper presents a major development of artificial intelligent (AI) algorithms through application of a DEA to the TEP problem. The effectiveness of the proposed development is initially demonstrated via analysis of the Garver's six-bus test system and the IEEE 25-bus test system within the mathematical programming environment of MATLAB. Analyses are performed using both a DEA and a conventional genetic algorithm (CGA) and a detailed comparative study is presented","PeriodicalId":184186,"journal":{"name":"Proceedings of the 41st International Universities Power Engineering Conference","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A Comparative Study of State-of-the-Art Transmission Expansion Planning Tools\",\"authors\":\"T. Sum-Im, G. Taylor, M. Irving, Y. Song\",\"doi\":\"10.1109/UPEC.2006.367757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel differential evolution algorithm (DEA) is applied directly to the DC power flow based model to solve the transmission expansion planning (TEP) problem. This paper presents a major development of artificial intelligent (AI) algorithms through application of a DEA to the TEP problem. The effectiveness of the proposed development is initially demonstrated via analysis of the Garver's six-bus test system and the IEEE 25-bus test system within the mathematical programming environment of MATLAB. Analyses are performed using both a DEA and a conventional genetic algorithm (CGA) and a detailed comparative study is presented\",\"PeriodicalId\":184186,\"journal\":{\"name\":\"Proceedings of the 41st International Universities Power Engineering Conference\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st International Universities Power Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2006.367757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st International Universities Power Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2006.367757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文将一种新的差分进化算法(DEA)直接应用于基于直流潮流的输电扩展规划(TEP)模型。本文通过将DEA应用于TEP问题,介绍了人工智能(AI)算法的一个主要发展。通过对Garver的六总线测试系统和IEEE 25总线测试系统在MATLAB数学编程环境中的分析,初步证明了所提出的开发的有效性。使用DEA和传统遗传算法(CGA)进行了分析,并进行了详细的比较研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study of State-of-the-Art Transmission Expansion Planning Tools
In this paper, a novel differential evolution algorithm (DEA) is applied directly to the DC power flow based model to solve the transmission expansion planning (TEP) problem. This paper presents a major development of artificial intelligent (AI) algorithms through application of a DEA to the TEP problem. The effectiveness of the proposed development is initially demonstrated via analysis of the Garver's six-bus test system and the IEEE 25-bus test system within the mathematical programming environment of MATLAB. Analyses are performed using both a DEA and a conventional genetic algorithm (CGA) and a detailed comparative study is presented
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信