圆形轨道磁卫星的非完全可积性

D. Boucher
{"title":"圆形轨道磁卫星的非完全可积性","authors":"D. Boucher","doi":"10.1145/1073884.1073894","DOIUrl":null,"url":null,"abstract":"We consider the motion of a rigid body (for example a satellite) on a circular orbit around a fixed gravitational and magnetic center. We study the non complete meromorphic integrability of the equations of motion which depend on parameters linked to the inertia tensor of the satellite and to the magnetic field. Using tools from computer algebra we apply a criterion deduced from J.-J. Morales and J.-P. Ramis theorem which relies on the differential Galois group of a linear differential system, called normal variational system. With this criterion, we establish non complete integrability for the magnetic satellite with axial symmetry, except for a particular family F already found in [11], and for the satellite without axial symmetry. In the case of the axial symmetry, we discuss the family F using higher order variational equations ([14]) and also prove non complete integrability.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non complete integrability of a magnetic satellite in circular orbit\",\"authors\":\"D. Boucher\",\"doi\":\"10.1145/1073884.1073894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the motion of a rigid body (for example a satellite) on a circular orbit around a fixed gravitational and magnetic center. We study the non complete meromorphic integrability of the equations of motion which depend on parameters linked to the inertia tensor of the satellite and to the magnetic field. Using tools from computer algebra we apply a criterion deduced from J.-J. Morales and J.-P. Ramis theorem which relies on the differential Galois group of a linear differential system, called normal variational system. With this criterion, we establish non complete integrability for the magnetic satellite with axial symmetry, except for a particular family F already found in [11], and for the satellite without axial symmetry. In the case of the axial symmetry, we discuss the family F using higher order variational equations ([14]) and also prove non complete integrability.\",\"PeriodicalId\":311546,\"journal\":{\"name\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1073884.1073894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑一个刚体(例如卫星)围绕一个固定的引力和磁场中心在圆形轨道上的运动。研究了与卫星惯性张量和磁场相关参数的运动方程的非完全亚纯可积性。利用计算机代数的工具,我们应用了j - j导出的判据。莫拉莱斯和j.p。拉米斯定理依赖于微分伽罗瓦群的线性微分系统,称为正变分系统。利用这一准则,我们建立了具有轴对称的磁卫星的非完全可积性,除了在[11]中已经找到的特定族F之外,以及不具有轴对称的卫星。在轴对称的情况下,我们用高阶变分方程讨论了F族([14]),并证明了F族的非完全可积性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non complete integrability of a magnetic satellite in circular orbit
We consider the motion of a rigid body (for example a satellite) on a circular orbit around a fixed gravitational and magnetic center. We study the non complete meromorphic integrability of the equations of motion which depend on parameters linked to the inertia tensor of the satellite and to the magnetic field. Using tools from computer algebra we apply a criterion deduced from J.-J. Morales and J.-P. Ramis theorem which relies on the differential Galois group of a linear differential system, called normal variational system. With this criterion, we establish non complete integrability for the magnetic satellite with axial symmetry, except for a particular family F already found in [11], and for the satellite without axial symmetry. In the case of the axial symmetry, we discuss the family F using higher order variational equations ([14]) and also prove non complete integrability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信