Shih-Yi Yuan, Ting-Wei Yeh, Y. Tang, Chiu-Kuo Chen
{"title":"时域电磁干扰测量方法","authors":"Shih-Yi Yuan, Ting-Wei Yeh, Y. Tang, Chiu-Kuo Chen","doi":"10.1109/EMCCOMPO.2015.7358352","DOIUrl":null,"url":null,"abstract":"With substantial progress in Internet of things (IoT), new challenges of EMI on IoT (IoT-EMI) measurement have emerged. The IoT-EMI behaviors are complex and dependent on the target's interactions between hardware and software. A systematic method for IoT-EMI measurement should be developed. However, the characteristics of IoT-EMI are digitally-controlled, time-varying, and software-dependent and make the IoT-EMI measurements difficult by conventional method. This paper proposes a time-domain measurement method for such issue. This method uses a `timestamp' by SW/HW-co-measurement strategy to analysis IoT-EMI behaviors. From the measurement result, the long-term measurements are comparable to the conventional SA measurements. And the software-related IoT-EMI results show tremendous differences - about 5-50 dBuV differences among different application programs are observed. To the best of the authors' knowledge, the software-dependent IoT-EMI behaviors are firstly observed and published.","PeriodicalId":236992,"journal":{"name":"2015 10th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Time-domain EMI measurement methodology\",\"authors\":\"Shih-Yi Yuan, Ting-Wei Yeh, Y. Tang, Chiu-Kuo Chen\",\"doi\":\"10.1109/EMCCOMPO.2015.7358352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With substantial progress in Internet of things (IoT), new challenges of EMI on IoT (IoT-EMI) measurement have emerged. The IoT-EMI behaviors are complex and dependent on the target's interactions between hardware and software. A systematic method for IoT-EMI measurement should be developed. However, the characteristics of IoT-EMI are digitally-controlled, time-varying, and software-dependent and make the IoT-EMI measurements difficult by conventional method. This paper proposes a time-domain measurement method for such issue. This method uses a `timestamp' by SW/HW-co-measurement strategy to analysis IoT-EMI behaviors. From the measurement result, the long-term measurements are comparable to the conventional SA measurements. And the software-related IoT-EMI results show tremendous differences - about 5-50 dBuV differences among different application programs are observed. To the best of the authors' knowledge, the software-dependent IoT-EMI behaviors are firstly observed and published.\",\"PeriodicalId\":236992,\"journal\":{\"name\":\"2015 10th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCCOMPO.2015.7358352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCCOMPO.2015.7358352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
With substantial progress in Internet of things (IoT), new challenges of EMI on IoT (IoT-EMI) measurement have emerged. The IoT-EMI behaviors are complex and dependent on the target's interactions between hardware and software. A systematic method for IoT-EMI measurement should be developed. However, the characteristics of IoT-EMI are digitally-controlled, time-varying, and software-dependent and make the IoT-EMI measurements difficult by conventional method. This paper proposes a time-domain measurement method for such issue. This method uses a `timestamp' by SW/HW-co-measurement strategy to analysis IoT-EMI behaviors. From the measurement result, the long-term measurements are comparable to the conventional SA measurements. And the software-related IoT-EMI results show tremendous differences - about 5-50 dBuV differences among different application programs are observed. To the best of the authors' knowledge, the software-dependent IoT-EMI behaviors are firstly observed and published.