乘法正则化在电阻抗断层成像中的应用

Ke Zhang, Maokun Li, Fan Yang, Shenheng Xu, A. Abubakar
{"title":"乘法正则化在电阻抗断层成像中的应用","authors":"Ke Zhang, Maokun Li, Fan Yang, Shenheng Xu, A. Abubakar","doi":"10.1109/APUSNCURSINRSM.2017.8072056","DOIUrl":null,"url":null,"abstract":"A multiplicative regularization scheme with edge-preserving characteristics is applied to the inversion of electrical impedance tomography (EIT) data. This scheme employs a multiplicative cost function of a weighted L2-norm regularization function and the data misfit function. It avoids the use of a weighting factor when the regularization term is added to the cost function and allows an adaptive weighting between data misfit and the regularization function. Gauss-Newton method is used to minimize the multiplicative cost function. In this work, we extend the weighted L2-norm regularization scheme onto a triangular grid with an updated formula for gradient and divergence operators. This scheme is tested using synthetic data. The reconstructed images show good piecewise constant characteristics and noise-resistance performance.","PeriodicalId":264754,"journal":{"name":"2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Application of multiplicative regularization for electrical impedance tomography\",\"authors\":\"Ke Zhang, Maokun Li, Fan Yang, Shenheng Xu, A. Abubakar\",\"doi\":\"10.1109/APUSNCURSINRSM.2017.8072056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multiplicative regularization scheme with edge-preserving characteristics is applied to the inversion of electrical impedance tomography (EIT) data. This scheme employs a multiplicative cost function of a weighted L2-norm regularization function and the data misfit function. It avoids the use of a weighting factor when the regularization term is added to the cost function and allows an adaptive weighting between data misfit and the regularization function. Gauss-Newton method is used to minimize the multiplicative cost function. In this work, we extend the weighted L2-norm regularization scheme onto a triangular grid with an updated formula for gradient and divergence operators. This scheme is tested using synthetic data. The reconstructed images show good piecewise constant characteristics and noise-resistance performance.\",\"PeriodicalId\":264754,\"journal\":{\"name\":\"2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APUSNCURSINRSM.2017.8072056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APUSNCURSINRSM.2017.8072056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

将一种具有边缘保持特性的乘法正则化方法应用于电阻抗层析成像数据的反演。该方案采用加权l2范数正则化函数和数据失拟函数的乘法代价函数。它避免了将正则化项添加到代价函数时使用加权因子,并允许在数据不拟合和正则化函数之间自适应加权。采用高斯-牛顿法最小化乘法代价函数。在这项工作中,我们将加权l2 -范数正则化方案扩展到三角形网格上,并更新了梯度算子和散度算子的公式。利用综合数据对该方案进行了验证。重建图像具有良好的分段常数特性和抗噪声性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of multiplicative regularization for electrical impedance tomography
A multiplicative regularization scheme with edge-preserving characteristics is applied to the inversion of electrical impedance tomography (EIT) data. This scheme employs a multiplicative cost function of a weighted L2-norm regularization function and the data misfit function. It avoids the use of a weighting factor when the regularization term is added to the cost function and allows an adaptive weighting between data misfit and the regularization function. Gauss-Newton method is used to minimize the multiplicative cost function. In this work, we extend the weighted L2-norm regularization scheme onto a triangular grid with an updated formula for gradient and divergence operators. This scheme is tested using synthetic data. The reconstructed images show good piecewise constant characteristics and noise-resistance performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信