变换域分解聚光灯模式sar原始数据的自回归建模

T. Ikuma, M. Naraghi-Pour, T. Lewis
{"title":"变换域分解聚光灯模式sar原始数据的自回归建模","authors":"T. Ikuma, M. Naraghi-Pour, T. Lewis","doi":"10.1109/IGARSS.2010.5653086","DOIUrl":null,"url":null,"abstract":"Raw data collected by synthetic aperture radar (SAR) is commonly assumed to be uncorrelated and with a zero-mean Gaussian distribution. In this paper, we show—both analytically and numerically—that the range-wise inverse Fourier transform of the dechirp-on-receive circular SAR data exhibits significant correlation in the azimuth direction. Moreover, we show that a block adaptive autoregressive model well represents the transformed SAR data.","PeriodicalId":406785,"journal":{"name":"2010 IEEE International Geoscience and Remote Sensing Symposium","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Autoregressive modeling of dechirped spotlight-mode sar rawdata in transform domain\",\"authors\":\"T. Ikuma, M. Naraghi-Pour, T. Lewis\",\"doi\":\"10.1109/IGARSS.2010.5653086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Raw data collected by synthetic aperture radar (SAR) is commonly assumed to be uncorrelated and with a zero-mean Gaussian distribution. In this paper, we show—both analytically and numerically—that the range-wise inverse Fourier transform of the dechirp-on-receive circular SAR data exhibits significant correlation in the azimuth direction. Moreover, we show that a block adaptive autoregressive model well represents the transformed SAR data.\",\"PeriodicalId\":406785,\"journal\":{\"name\":\"2010 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2010.5653086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2010.5653086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

合成孔径雷达(SAR)采集的原始数据通常被认为是不相关的,并且具有零均值高斯分布。在本文中,我们用解析和数值两种方法表明,接收后解码的圆形SAR数据的距离方向傅里叶反变换在方位角方向上表现出显著的相关性。此外,我们还证明了一个块自适应自回归模型可以很好地表示转换后的SAR数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autoregressive modeling of dechirped spotlight-mode sar rawdata in transform domain
Raw data collected by synthetic aperture radar (SAR) is commonly assumed to be uncorrelated and with a zero-mean Gaussian distribution. In this paper, we show—both analytically and numerically—that the range-wise inverse Fourier transform of the dechirp-on-receive circular SAR data exhibits significant correlation in the azimuth direction. Moreover, we show that a block adaptive autoregressive model well represents the transformed SAR data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信