应用自适应遗传算法改进语音情感识别

M. Sedaaghi, Constantine Kotropoulos, D. Ververidis
{"title":"应用自适应遗传算法改进语音情感识别","authors":"M. Sedaaghi, Constantine Kotropoulos, D. Ververidis","doi":"10.1109/MMSP.2007.4412916","DOIUrl":null,"url":null,"abstract":"In this paper, adaptive genetic algorithms are employed to search for the worst performing features with respect to the probability of correct classification achieved by the Bayes classifier in a first stage. These features are subsequently excluded from sequential floating feature selection that employs the probability of correct classification of the Bayes classifier as criterion. In a second stage, adaptive genetic algorithms search for the worst performing utterances with respect to the same criterion. The sequential application of both stages is demonstrated to improve speech emotion recognition on the Danish Emotional Speech database.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Using Adaptive Genetic Algorithms to Improve Speech Emotion Recognition\",\"authors\":\"M. Sedaaghi, Constantine Kotropoulos, D. Ververidis\",\"doi\":\"10.1109/MMSP.2007.4412916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, adaptive genetic algorithms are employed to search for the worst performing features with respect to the probability of correct classification achieved by the Bayes classifier in a first stage. These features are subsequently excluded from sequential floating feature selection that employs the probability of correct classification of the Bayes classifier as criterion. In a second stage, adaptive genetic algorithms search for the worst performing utterances with respect to the same criterion. The sequential application of both stages is demonstrated to improve speech emotion recognition on the Danish Emotional Speech database.\",\"PeriodicalId\":225295,\"journal\":{\"name\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2007.4412916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文采用自适应遗传算法在第一阶段根据贝叶斯分类器的正确分类概率搜索表现最差的特征。这些特征随后被排除在使用贝叶斯分类器正确分类的概率作为标准的顺序浮动特征选择之外。在第二阶段,自适应遗传算法根据相同的标准搜索表现最差的话语。这两个阶段的顺序应用被证明可以提高丹麦情感语音数据库上的语音情感识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Adaptive Genetic Algorithms to Improve Speech Emotion Recognition
In this paper, adaptive genetic algorithms are employed to search for the worst performing features with respect to the probability of correct classification achieved by the Bayes classifier in a first stage. These features are subsequently excluded from sequential floating feature selection that employs the probability of correct classification of the Bayes classifier as criterion. In a second stage, adaptive genetic algorithms search for the worst performing utterances with respect to the same criterion. The sequential application of both stages is demonstrated to improve speech emotion recognition on the Danish Emotional Speech database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信