T. Letrouvé, A. Bouscayrol, W. Lhomme, N. Dollinger
{"title":"双并联四轮驱动混合动力汽车在不同驾驶周期下的优势","authors":"T. Letrouvé, A. Bouscayrol, W. Lhomme, N. Dollinger","doi":"10.1109/VPPC.2013.6671730","DOIUrl":null,"url":null,"abstract":"The Hybrid4 PSA Peugeot Citroën architecture is one of the most complex HEV (Hybrid Electric Vehicle) in the market. This vehicle's architecture is called double parallel HEV. The complexity of this technology makes its control complex. The objective of this paper is to highlight the different benefits of this architecture regarding different driving cycles. The Energetic Macroscopic Representation is used to describe and to deduce the systematic control.","PeriodicalId":119598,"journal":{"name":"2013 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Benefits of a Double Parallel 4-Wheel-Drive HEV for Different Driving Cycles\",\"authors\":\"T. Letrouvé, A. Bouscayrol, W. Lhomme, N. Dollinger\",\"doi\":\"10.1109/VPPC.2013.6671730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hybrid4 PSA Peugeot Citroën architecture is one of the most complex HEV (Hybrid Electric Vehicle) in the market. This vehicle's architecture is called double parallel HEV. The complexity of this technology makes its control complex. The objective of this paper is to highlight the different benefits of this architecture regarding different driving cycles. The Energetic Macroscopic Representation is used to describe and to deduce the systematic control.\",\"PeriodicalId\":119598,\"journal\":{\"name\":\"2013 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VPPC.2013.6671730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2013.6671730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Benefits of a Double Parallel 4-Wheel-Drive HEV for Different Driving Cycles
The Hybrid4 PSA Peugeot Citroën architecture is one of the most complex HEV (Hybrid Electric Vehicle) in the market. This vehicle's architecture is called double parallel HEV. The complexity of this technology makes its control complex. The objective of this paper is to highlight the different benefits of this architecture regarding different driving cycles. The Energetic Macroscopic Representation is used to describe and to deduce the systematic control.