非线性建模与混沌神经网络

A. J. Jones, Steve Margetts, P. Durrant, Alban P. M. Tsui
{"title":"非线性建模与混沌神经网络","authors":"A. J. Jones, Steve Margetts, P. Durrant, Alban P. M. Tsui","doi":"10.1109/SBRN.2000.889706","DOIUrl":null,"url":null,"abstract":"Proposes a simple methodology to construct an iterative neural network which mimics a given chaotic time series. The methodology uses the Gamma test to identify a suitable (possibly irregular) embedding of the chaotic time series from which a one step predictive model may be constructed. This model is then iterated to produce a close approximation to the original chaotic dynamics. Having constructed such networks we show how the chaotic dynamics may be stabilised using time-delayed feedback, which is a plausible method for stabilisation in biological neural systems. Using delayed feedback control, which is activated in the presence of a stimulus, such networks can behave as an associative memory, in which the act of recognition corresponds to stabilisation onto an unstable periodic orbit. We briefly illustrate how two identical dynamically independent copies of such a chaotic iterative network may be synchronised using the delayed feedback method. Although less biologically plausible, these techniques may have interesting applications in secure communications.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-linear modelling and chaotic neural networks\",\"authors\":\"A. J. Jones, Steve Margetts, P. Durrant, Alban P. M. Tsui\",\"doi\":\"10.1109/SBRN.2000.889706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposes a simple methodology to construct an iterative neural network which mimics a given chaotic time series. The methodology uses the Gamma test to identify a suitable (possibly irregular) embedding of the chaotic time series from which a one step predictive model may be constructed. This model is then iterated to produce a close approximation to the original chaotic dynamics. Having constructed such networks we show how the chaotic dynamics may be stabilised using time-delayed feedback, which is a plausible method for stabilisation in biological neural systems. Using delayed feedback control, which is activated in the presence of a stimulus, such networks can behave as an associative memory, in which the act of recognition corresponds to stabilisation onto an unstable periodic orbit. We briefly illustrate how two identical dynamically independent copies of such a chaotic iterative network may be synchronised using the delayed feedback method. Although less biologically plausible, these techniques may have interesting applications in secure communications.\",\"PeriodicalId\":448461,\"journal\":{\"name\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2000.889706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种简单的方法来构造一个模拟给定混沌时间序列的迭代神经网络。该方法使用伽玛检验来识别混沌时间序列的合适(可能不规则)嵌入,从中可以构建一步预测模型。然后迭代该模型以产生与原始混沌动力学的近似。在构建了这样的网络后,我们展示了如何使用时滞反馈来稳定混沌动力学,这是生物神经系统稳定的一种可行方法。使用延迟反馈控制,在刺激存在时被激活,这样的网络可以表现为联想记忆,其中识别行为对应于不稳定周期轨道的稳定。我们简要地说明了如何使用延迟反馈方法同步这种混沌迭代网络的两个相同的动态独立副本。虽然这些技术在生物学上不太可信,但在安全通信方面可能有有趣的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-linear modelling and chaotic neural networks
Proposes a simple methodology to construct an iterative neural network which mimics a given chaotic time series. The methodology uses the Gamma test to identify a suitable (possibly irregular) embedding of the chaotic time series from which a one step predictive model may be constructed. This model is then iterated to produce a close approximation to the original chaotic dynamics. Having constructed such networks we show how the chaotic dynamics may be stabilised using time-delayed feedback, which is a plausible method for stabilisation in biological neural systems. Using delayed feedback control, which is activated in the presence of a stimulus, such networks can behave as an associative memory, in which the act of recognition corresponds to stabilisation onto an unstable periodic orbit. We briefly illustrate how two identical dynamically independent copies of such a chaotic iterative network may be synchronised using the delayed feedback method. Although less biologically plausible, these techniques may have interesting applications in secure communications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信