无人机三维摆动对低于6ghz频段非静止空对地信道的影响

Xiaobo Yang, D. Zhai, Ruonan Zhang, Haotong Cao, S. Garg, Georges Kaddoum
{"title":"无人机三维摆动对低于6ghz频段非静止空对地信道的影响","authors":"Xiaobo Yang, D. Zhai, Ruonan Zhang, Haotong Cao, S. Garg, Georges Kaddoum","doi":"10.1109/GLOBECOM48099.2022.10000615","DOIUrl":null,"url":null,"abstract":"Wireless communication based on Unmanned aerial vehicle (UAV) is one of the important technologies in the future communication system. It is necessary to establish an accurate air-to-ground (A2G) wireless channel model. In this paper, a A2G channel model with UAV three-dimensional (3D) wobbles (pitch, roll, and yaw) is proposed. The internal vibration of the UAV is modeled as a sinusoidal random process, and the UAV wobble caused by the random air fluctuations is modeled as the uniform distribution random process. We derive the A2G channel temporal auto-correlation function (ACF) with UAV 3D wobbles, analyze the variation of the temporal ACF with different time instants, carrier frequencies, and amplitudes of the wobble angles. It is found that, even if the UAV wobbles slightly, the channel temporal correlation will be significantly affected. Numerical results show that the channel ACF will decrease rapidly with the increase of the amplitudes of the wobble angles and the carrier frequency. This work contributes to the establishment of the next generation wireless channel model and the design of communication system.","PeriodicalId":313199,"journal":{"name":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of UAV 3D Wobbles on the Non-Stationary Air-to-Ground Channels at Sub-6 GHz Bands\",\"authors\":\"Xiaobo Yang, D. Zhai, Ruonan Zhang, Haotong Cao, S. Garg, Georges Kaddoum\",\"doi\":\"10.1109/GLOBECOM48099.2022.10000615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless communication based on Unmanned aerial vehicle (UAV) is one of the important technologies in the future communication system. It is necessary to establish an accurate air-to-ground (A2G) wireless channel model. In this paper, a A2G channel model with UAV three-dimensional (3D) wobbles (pitch, roll, and yaw) is proposed. The internal vibration of the UAV is modeled as a sinusoidal random process, and the UAV wobble caused by the random air fluctuations is modeled as the uniform distribution random process. We derive the A2G channel temporal auto-correlation function (ACF) with UAV 3D wobbles, analyze the variation of the temporal ACF with different time instants, carrier frequencies, and amplitudes of the wobble angles. It is found that, even if the UAV wobbles slightly, the channel temporal correlation will be significantly affected. Numerical results show that the channel ACF will decrease rapidly with the increase of the amplitudes of the wobble angles and the carrier frequency. This work contributes to the establishment of the next generation wireless channel model and the design of communication system.\",\"PeriodicalId\":313199,\"journal\":{\"name\":\"GLOBECOM 2022 - 2022 IEEE Global Communications Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2022 - 2022 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM48099.2022.10000615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM48099.2022.10000615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于无人机的无线通信是未来通信系统的重要技术之一。有必要建立准确的空对地(A2G)无线信道模型。本文提出了一种具有无人机三维摆动(俯仰、横摇和偏航)的A2G通道模型。将无人机的内部振动建模为正弦随机过程,将随机空气波动引起的无人机摆动建模为均匀分布随机过程。推导了无人机三维摆动的A2G信道时间自相关函数(ACF),分析了时域自相关函数在不同时刻、载波频率和摆动角幅值下的变化规律。研究发现,即使无人机有轻微的摆动,也会显著影响信道时间相关。数值结果表明,通道ACF随摆角幅值和载波频率的增大而迅速减小。该工作有助于下一代无线信道模型的建立和通信系统的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of UAV 3D Wobbles on the Non-Stationary Air-to-Ground Channels at Sub-6 GHz Bands
Wireless communication based on Unmanned aerial vehicle (UAV) is one of the important technologies in the future communication system. It is necessary to establish an accurate air-to-ground (A2G) wireless channel model. In this paper, a A2G channel model with UAV three-dimensional (3D) wobbles (pitch, roll, and yaw) is proposed. The internal vibration of the UAV is modeled as a sinusoidal random process, and the UAV wobble caused by the random air fluctuations is modeled as the uniform distribution random process. We derive the A2G channel temporal auto-correlation function (ACF) with UAV 3D wobbles, analyze the variation of the temporal ACF with different time instants, carrier frequencies, and amplitudes of the wobble angles. It is found that, even if the UAV wobbles slightly, the channel temporal correlation will be significantly affected. Numerical results show that the channel ACF will decrease rapidly with the increase of the amplitudes of the wobble angles and the carrier frequency. This work contributes to the establishment of the next generation wireless channel model and the design of communication system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信