非均匀杂波背景下贝叶斯CFAR雷达信号处理器的描述与分析

R.C. Colgin
{"title":"非均匀杂波背景下贝叶斯CFAR雷达信号处理器的描述与分析","authors":"R.C. Colgin","doi":"10.1109/NRC.1998.677968","DOIUrl":null,"url":null,"abstract":"A major problem that occurs in constant false alarm rate (CFAR) schemes is presented by regions of nonhomogeneous clutter background. The situation occurs when the total noise power received in a single reference window does not follow the assumption of independent and identically distributed clutter in all reference window cells. Bayesian statistics provide a mathematical procedure for changing or updating the degree of belief about the clutter parameter in light of more recent information. A Bayesian CFAR (Bay-CFAR) processor is developed and analyzed. The Bay-CFAR processor exploits a priori knowledge of a nonhomogeneous clutter environment to considerably improve the detection performance relative to a classical cell averaging CFAR (CA-CFAR) processor. The performance improvement is demonstrated with a small reference window size that allows the processor to respond quickly to a rapidly changing clutter environment.","PeriodicalId":432418,"journal":{"name":"Proceedings of the 1998 IEEE Radar Conference, RADARCON'98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Description and analysis of a Bayesian CFAR radar signal processor in a nonhomogeneous clutter background\",\"authors\":\"R.C. Colgin\",\"doi\":\"10.1109/NRC.1998.677968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major problem that occurs in constant false alarm rate (CFAR) schemes is presented by regions of nonhomogeneous clutter background. The situation occurs when the total noise power received in a single reference window does not follow the assumption of independent and identically distributed clutter in all reference window cells. Bayesian statistics provide a mathematical procedure for changing or updating the degree of belief about the clutter parameter in light of more recent information. A Bayesian CFAR (Bay-CFAR) processor is developed and analyzed. The Bay-CFAR processor exploits a priori knowledge of a nonhomogeneous clutter environment to considerably improve the detection performance relative to a classical cell averaging CFAR (CA-CFAR) processor. The performance improvement is demonstrated with a small reference window size that allows the processor to respond quickly to a rapidly changing clutter environment.\",\"PeriodicalId\":432418,\"journal\":{\"name\":\"Proceedings of the 1998 IEEE Radar Conference, RADARCON'98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1998 IEEE Radar Conference, RADARCON'98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRC.1998.677968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1998 IEEE Radar Conference, RADARCON'98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.1998.677968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

非均匀杂波背景区域是恒虚警率(CFAR)方案存在的一个主要问题。当单个参考窗口接收的总噪声功率不符合所有参考窗口单元中杂波独立且分布相同的假设时,就会出现这种情况。贝叶斯统计提供了一种数学方法来根据最新的信息改变或更新杂波参数的信度。开发并分析了贝叶斯CFAR (bayes CFAR)处理器。Bay-CFAR处理器利用非均匀杂波环境的先验知识,相对于经典的单元平均CFAR (CA-CFAR)处理器,大大提高了检测性能。性能的改进是通过一个小的参考窗口大小来证明的,它允许处理器快速响应快速变化的杂波环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Description and analysis of a Bayesian CFAR radar signal processor in a nonhomogeneous clutter background
A major problem that occurs in constant false alarm rate (CFAR) schemes is presented by regions of nonhomogeneous clutter background. The situation occurs when the total noise power received in a single reference window does not follow the assumption of independent and identically distributed clutter in all reference window cells. Bayesian statistics provide a mathematical procedure for changing or updating the degree of belief about the clutter parameter in light of more recent information. A Bayesian CFAR (Bay-CFAR) processor is developed and analyzed. The Bay-CFAR processor exploits a priori knowledge of a nonhomogeneous clutter environment to considerably improve the detection performance relative to a classical cell averaging CFAR (CA-CFAR) processor. The performance improvement is demonstrated with a small reference window size that allows the processor to respond quickly to a rapidly changing clutter environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信