ROC曲线分析验证客观图像融合指标

Neal Messer, Soundararajan Ezekiel, M. Ferris, E. Blasch, M. Alford, Maria Scalzo-Cornacchia, A. Bubalo
{"title":"ROC曲线分析验证客观图像融合指标","authors":"Neal Messer, Soundararajan Ezekiel, M. Ferris, E. Blasch, M. Alford, Maria Scalzo-Cornacchia, A. Bubalo","doi":"10.1109/AIPR.2015.7444531","DOIUrl":null,"url":null,"abstract":"Image fusion is a process that allows for the synthesis of information from multiple source images into a single image. There are many applications for image fusion including night vision, medical imaging, and remote sensing. Over the many applications, numerous image fusion algorithms have been explored from averaging pixel intensities to fusion through multi-resolution decomposition transforms such as the wavelet or contourlet. Objective evaluation of a given image fusion method is still a major challenge especially when there exists no reference image. Existing no-reference objective fusion metrics include information theory based metrics, image feature based metrics, and structural similarity metrics. However there has been very little work done in validating which objective metric best evaluates a given image fusion algorithm. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) provide a viable validation method for metric selection. This study focuses on validating objective fusion metrics over mutual information, spatial frequency, and structural similarity Index Measure (SSIM) used to evaluate fusion algorithms for denoising applications.","PeriodicalId":440673,"journal":{"name":"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ROC curve analysis for validating objective image fusion metrics\",\"authors\":\"Neal Messer, Soundararajan Ezekiel, M. Ferris, E. Blasch, M. Alford, Maria Scalzo-Cornacchia, A. Bubalo\",\"doi\":\"10.1109/AIPR.2015.7444531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image fusion is a process that allows for the synthesis of information from multiple source images into a single image. There are many applications for image fusion including night vision, medical imaging, and remote sensing. Over the many applications, numerous image fusion algorithms have been explored from averaging pixel intensities to fusion through multi-resolution decomposition transforms such as the wavelet or contourlet. Objective evaluation of a given image fusion method is still a major challenge especially when there exists no reference image. Existing no-reference objective fusion metrics include information theory based metrics, image feature based metrics, and structural similarity metrics. However there has been very little work done in validating which objective metric best evaluates a given image fusion algorithm. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) provide a viable validation method for metric selection. This study focuses on validating objective fusion metrics over mutual information, spatial frequency, and structural similarity Index Measure (SSIM) used to evaluate fusion algorithms for denoising applications.\",\"PeriodicalId\":440673,\"journal\":{\"name\":\"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2015.7444531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2015.7444531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图像融合是一种将多个源图像中的信息合成为单个图像的过程。图像融合有许多应用,包括夜视、医学成像和遥感。在许多应用中,已经探索了许多图像融合算法,从平均像素强度到通过多分辨率分解变换(如小波或contourlet)进行融合。对给定的图像融合方法进行客观评价仍然是一个重大挑战,特别是在没有参考图像的情况下。现有的无参考目标融合度量包括基于信息论的度量、基于图像特征的度量和结构相似性度量。然而,在验证哪个客观度量最能评价给定的图像融合算法方面做的工作很少。受试者工作特征(ROC)曲线和曲线下面积(AUC)为指标选择提供了可行的验证方法。本研究的重点是验证基于互信息、空间频率和结构相似指数测量(SSIM)的客观融合指标,用于评估融合算法的去噪应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ROC curve analysis for validating objective image fusion metrics
Image fusion is a process that allows for the synthesis of information from multiple source images into a single image. There are many applications for image fusion including night vision, medical imaging, and remote sensing. Over the many applications, numerous image fusion algorithms have been explored from averaging pixel intensities to fusion through multi-resolution decomposition transforms such as the wavelet or contourlet. Objective evaluation of a given image fusion method is still a major challenge especially when there exists no reference image. Existing no-reference objective fusion metrics include information theory based metrics, image feature based metrics, and structural similarity metrics. However there has been very little work done in validating which objective metric best evaluates a given image fusion algorithm. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) provide a viable validation method for metric selection. This study focuses on validating objective fusion metrics over mutual information, spatial frequency, and structural similarity Index Measure (SSIM) used to evaluate fusion algorithms for denoising applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信