Lin Zhang, Hongtu Xie, Shifei Li, Chengsheng Zhang, Di Zhang, Wenhui Tang, Zhaojian Zhang
{"title":"基于sofc的直流微电网外部负载增加时燃料短缺控制方法","authors":"Lin Zhang, Hongtu Xie, Shifei Li, Chengsheng Zhang, Di Zhang, Wenhui Tang, Zhaojian Zhang","doi":"10.1145/3611450.3611455","DOIUrl":null,"url":null,"abstract":"At present, the direct current (DC) micro-grid based on the solid oxide fuel cell (SOFC) can supply the power to the external load independently. Despite an adequate and steady supply of the electricity to the external load, the high efficiency and avoiding fuel starvation is other points for the attention. In this paper, a control method of the SOFC-based DC micro-grid has been proposed, which can avoid the fuel starvation when the external load power increases This method adopts the optimal operating points (OOPs) to obtain the maximum efficiency, and then a novel time-delay control algorithm based on the system electric current is designed to avoid the fuel starvation. All simulation results demonstrate that the proposed method is feasible, which can effectively solve the fuel starvation problem. What's more, the output efficiency can be up to 40%, which can get the high efficiency of the power supply. The works in this paper can provide the reference for other similar systems to solve the fuel starvation problem.","PeriodicalId":289906,"journal":{"name":"Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Control Method of SOFC-based DC Micro-grid to Avoid Fuel Starvation when External Load Power Increases\",\"authors\":\"Lin Zhang, Hongtu Xie, Shifei Li, Chengsheng Zhang, Di Zhang, Wenhui Tang, Zhaojian Zhang\",\"doi\":\"10.1145/3611450.3611455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, the direct current (DC) micro-grid based on the solid oxide fuel cell (SOFC) can supply the power to the external load independently. Despite an adequate and steady supply of the electricity to the external load, the high efficiency and avoiding fuel starvation is other points for the attention. In this paper, a control method of the SOFC-based DC micro-grid has been proposed, which can avoid the fuel starvation when the external load power increases This method adopts the optimal operating points (OOPs) to obtain the maximum efficiency, and then a novel time-delay control algorithm based on the system electric current is designed to avoid the fuel starvation. All simulation results demonstrate that the proposed method is feasible, which can effectively solve the fuel starvation problem. What's more, the output efficiency can be up to 40%, which can get the high efficiency of the power supply. The works in this paper can provide the reference for other similar systems to solve the fuel starvation problem.\",\"PeriodicalId\":289906,\"journal\":{\"name\":\"Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3611450.3611455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3611450.3611455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Control Method of SOFC-based DC Micro-grid to Avoid Fuel Starvation when External Load Power Increases
At present, the direct current (DC) micro-grid based on the solid oxide fuel cell (SOFC) can supply the power to the external load independently. Despite an adequate and steady supply of the electricity to the external load, the high efficiency and avoiding fuel starvation is other points for the attention. In this paper, a control method of the SOFC-based DC micro-grid has been proposed, which can avoid the fuel starvation when the external load power increases This method adopts the optimal operating points (OOPs) to obtain the maximum efficiency, and then a novel time-delay control algorithm based on the system electric current is designed to avoid the fuel starvation. All simulation results demonstrate that the proposed method is feasible, which can effectively solve the fuel starvation problem. What's more, the output efficiency can be up to 40%, which can get the high efficiency of the power supply. The works in this paper can provide the reference for other similar systems to solve the fuel starvation problem.