利用非等温、瞬态油藏和井筒模型从温度瞬态数据估计多层系统的渗透率、表皮和流入剖面

C. Alan, Murat Cinar, M. Onur
{"title":"利用非等温、瞬态油藏和井筒模型从温度瞬态数据估计多层系统的渗透率、表皮和流入剖面","authors":"C. Alan, Murat Cinar, M. Onur","doi":"10.2118/214384-ms","DOIUrl":null,"url":null,"abstract":"\n The objective of this paper is to investigate the estimation of layer permeability, skin, and inflow profile from observations of production-logging-tool (PLT) and/or distributed temperature sensing (DTS) for a multilayered system where the layers communicate only through the wellbore. To achieve this objective, we develop a thermal, transient coupled reservoir/wellbore simulator that numerically solves transient mass, momentum, and energy conservation equations simultaneously for both reservoir and wellbore. The simulator accounts for the Joule-Thomson (J-T), adiabatic expansion, conduction, and convection effects for predicting the flow profiles across the wellbore. A comparison of the developed model with a commercial simulator is provided for the single-phase fluid flow of oil or geothermal brine from partially penetrating vertical or inclined wells with distinct fluid and formation properties. A sensitivity study on transient pressure, rate, and temperature profiles to identify the effect of the layer petrophysical properties and the layer thermophysical parameters is also conducted through synthetically generated test data sets from the developed simulator. In addition, nonlinear parameter estimation with the use of both profiles is shown to be useful to reveal permeability and skin information about individual layers. The results show that temperature transient data are more reflective of the properties of the near wellbore region, while wellbore pressures are determined more by average reservoir parameters. The simulator proves practical for designing a PLT test provided that limitations such as single-phase fluid flow having vertical or inclined well equipped with a thorough fluid characterization (EOS) are met. Such design tests may provide a good source for cross-checking PLT flow profiles and validating the fluid contributions from layers that are open to flow. It is often that the spinner of the field PLT tool does not operate properly at very low flow rates. Also, the spinner may fail to calculate and construct PLT plots accurately at very high flow rates. To the best of our knowledge, this is the first study that presents a coupled transient reservoir/wellbore model for predicting layer permeability, skin, and inflow profile of a well from observations of pressure, temperate, and/or rate data from production-logging-tools (PLTs) and/or distributed temperature sensing (DTS) fiber optic cables.","PeriodicalId":306106,"journal":{"name":"Day 4 Thu, June 08, 2023","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Permeability, Skin, and Inflow Profile in Multilayered Systems from Temperature Transient Data Using a Coupled Nonisothermal, Transient Reservoir and Wellbore Model\",\"authors\":\"C. Alan, Murat Cinar, M. Onur\",\"doi\":\"10.2118/214384-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The objective of this paper is to investigate the estimation of layer permeability, skin, and inflow profile from observations of production-logging-tool (PLT) and/or distributed temperature sensing (DTS) for a multilayered system where the layers communicate only through the wellbore. To achieve this objective, we develop a thermal, transient coupled reservoir/wellbore simulator that numerically solves transient mass, momentum, and energy conservation equations simultaneously for both reservoir and wellbore. The simulator accounts for the Joule-Thomson (J-T), adiabatic expansion, conduction, and convection effects for predicting the flow profiles across the wellbore. A comparison of the developed model with a commercial simulator is provided for the single-phase fluid flow of oil or geothermal brine from partially penetrating vertical or inclined wells with distinct fluid and formation properties. A sensitivity study on transient pressure, rate, and temperature profiles to identify the effect of the layer petrophysical properties and the layer thermophysical parameters is also conducted through synthetically generated test data sets from the developed simulator. In addition, nonlinear parameter estimation with the use of both profiles is shown to be useful to reveal permeability and skin information about individual layers. The results show that temperature transient data are more reflective of the properties of the near wellbore region, while wellbore pressures are determined more by average reservoir parameters. The simulator proves practical for designing a PLT test provided that limitations such as single-phase fluid flow having vertical or inclined well equipped with a thorough fluid characterization (EOS) are met. Such design tests may provide a good source for cross-checking PLT flow profiles and validating the fluid contributions from layers that are open to flow. It is often that the spinner of the field PLT tool does not operate properly at very low flow rates. Also, the spinner may fail to calculate and construct PLT plots accurately at very high flow rates. To the best of our knowledge, this is the first study that presents a coupled transient reservoir/wellbore model for predicting layer permeability, skin, and inflow profile of a well from observations of pressure, temperate, and/or rate data from production-logging-tools (PLTs) and/or distributed temperature sensing (DTS) fiber optic cables.\",\"PeriodicalId\":306106,\"journal\":{\"name\":\"Day 4 Thu, June 08, 2023\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, June 08, 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/214384-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, June 08, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/214384-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是通过生产测井工具(PLT)和/或分布式温度传感(DTS)的观测,研究多层体系的渗透率、表皮和流入剖面的估计,其中层间仅通过井筒进行通信。为了实现这一目标,我们开发了一种热、瞬态耦合油藏/井筒模拟器,可以同时对油藏和井筒的瞬态质量、动量和能量守恒方程进行数值求解。该模拟器考虑了焦耳-汤姆逊(J-T)、绝热膨胀、传导和对流效应,用于预测井筒流动剖面。将所建立的模型与商用仿真器进行了比较,并对不同流体和地层性质的部分穿透直井或斜井中油或地热盐水的单相流体流动进行了比较。通过开发的模拟器综合生成的测试数据集,对瞬态压力、速率和温度剖面进行敏感性研究,以识别地层岩石物性和地层热物性参数的影响。此外,使用两种剖面的非线性参数估计对于揭示单个层的渗透率和表皮信息是有用的。结果表明,温度瞬态数据更多地反映了近井区域的性质,而井筒压力更多地由平均油藏参数决定。该模拟器在设计PLT测试时是实用的,只要满足具有全面流体表征(EOS)的直井或斜井的单相流体流动等限制。这种设计测试可以为交叉检查PLT流动曲线和验证开放流动层的流体贡献提供良好的来源。通常情况下,现场PLT工具的旋转器在非常低的流量下不能正常工作。此外,在非常高的流量下,旋转器可能无法准确地计算和构建PLT图。据我们所知,这是第一次提出一个耦合的瞬态油藏/井筒模型,通过观察生产测井工具(plt)和/或分布式温度传感(DTS)光纤电缆的压力、温度和/或速率数据,预测井的层渗透率、表皮和流入剖面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Permeability, Skin, and Inflow Profile in Multilayered Systems from Temperature Transient Data Using a Coupled Nonisothermal, Transient Reservoir and Wellbore Model
The objective of this paper is to investigate the estimation of layer permeability, skin, and inflow profile from observations of production-logging-tool (PLT) and/or distributed temperature sensing (DTS) for a multilayered system where the layers communicate only through the wellbore. To achieve this objective, we develop a thermal, transient coupled reservoir/wellbore simulator that numerically solves transient mass, momentum, and energy conservation equations simultaneously for both reservoir and wellbore. The simulator accounts for the Joule-Thomson (J-T), adiabatic expansion, conduction, and convection effects for predicting the flow profiles across the wellbore. A comparison of the developed model with a commercial simulator is provided for the single-phase fluid flow of oil or geothermal brine from partially penetrating vertical or inclined wells with distinct fluid and formation properties. A sensitivity study on transient pressure, rate, and temperature profiles to identify the effect of the layer petrophysical properties and the layer thermophysical parameters is also conducted through synthetically generated test data sets from the developed simulator. In addition, nonlinear parameter estimation with the use of both profiles is shown to be useful to reveal permeability and skin information about individual layers. The results show that temperature transient data are more reflective of the properties of the near wellbore region, while wellbore pressures are determined more by average reservoir parameters. The simulator proves practical for designing a PLT test provided that limitations such as single-phase fluid flow having vertical or inclined well equipped with a thorough fluid characterization (EOS) are met. Such design tests may provide a good source for cross-checking PLT flow profiles and validating the fluid contributions from layers that are open to flow. It is often that the spinner of the field PLT tool does not operate properly at very low flow rates. Also, the spinner may fail to calculate and construct PLT plots accurately at very high flow rates. To the best of our knowledge, this is the first study that presents a coupled transient reservoir/wellbore model for predicting layer permeability, skin, and inflow profile of a well from observations of pressure, temperate, and/or rate data from production-logging-tools (PLTs) and/or distributed temperature sensing (DTS) fiber optic cables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信