雨中的交换:预测性无线x-haul网络重构

I. Kadota, Dror Jacoby, H. Messer, G. Zussman, J. Ostrometzky
{"title":"雨中的交换:预测性无线x-haul网络重构","authors":"I. Kadota, Dror Jacoby, H. Messer, G. Zussman, J. Ostrometzky","doi":"10.1145/3570616","DOIUrl":null,"url":null,"abstract":"4G, 5G, and smart city networks often rely on microwave and millimeter-wave x-haul links. A major challenge associated with these high frequency links is their susceptibility to weather conditions. In particular, precipitation may cause severe signal attenuation, which significantly degrades the network performance. In this paper, we develop a Predictive Network Reconfiguration (PNR) framework that uses historical data to predict the future condition of each link and then prepares the network ahead of time for imminent disturbances. The PNR framework has two components: (i) an Attenuation Prediction (AP) mechanism; and (ii) a Multi-Step Network Reconfiguration (MSNR) algorithm. The AP mechanism employs an encoder-decoder Long Short-Term Memory (LSTM) model to predict the sequence of future attenuation levels of each link. The MSNR algorithm leverages these predictions to dynamically optimize routing and admission control decisions aiming to maximize network utilization, while preserving max-min fairness among the nodes using the network (e.g., base-stations) and preventing transient congestion that may be caused by switching routes. We train, validate, and evaluate the PNR framework using a dataset containing over 2 million measurements collected from a real-world city-scale backhaul network. The results show that the framework: (i) predicts attenuation with high accuracy, with an RMSE of less than 0.4 dB for a prediction horizon of 50 seconds; and (ii) can improve the instantaneous network utilization by more than 200% when compared to reactive network reconfiguration algorithms that cannot leverage information about future disturbances.","PeriodicalId":426760,"journal":{"name":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Switching in the Rain: Predictive Wireless x-haul Network Reconfiguration\",\"authors\":\"I. Kadota, Dror Jacoby, H. Messer, G. Zussman, J. Ostrometzky\",\"doi\":\"10.1145/3570616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"4G, 5G, and smart city networks often rely on microwave and millimeter-wave x-haul links. A major challenge associated with these high frequency links is their susceptibility to weather conditions. In particular, precipitation may cause severe signal attenuation, which significantly degrades the network performance. In this paper, we develop a Predictive Network Reconfiguration (PNR) framework that uses historical data to predict the future condition of each link and then prepares the network ahead of time for imminent disturbances. The PNR framework has two components: (i) an Attenuation Prediction (AP) mechanism; and (ii) a Multi-Step Network Reconfiguration (MSNR) algorithm. The AP mechanism employs an encoder-decoder Long Short-Term Memory (LSTM) model to predict the sequence of future attenuation levels of each link. The MSNR algorithm leverages these predictions to dynamically optimize routing and admission control decisions aiming to maximize network utilization, while preserving max-min fairness among the nodes using the network (e.g., base-stations) and preventing transient congestion that may be caused by switching routes. We train, validate, and evaluate the PNR framework using a dataset containing over 2 million measurements collected from a real-world city-scale backhaul network. The results show that the framework: (i) predicts attenuation with high accuracy, with an RMSE of less than 0.4 dB for a prediction horizon of 50 seconds; and (ii) can improve the instantaneous network utilization by more than 200% when compared to reactive network reconfiguration algorithms that cannot leverage information about future disturbances.\",\"PeriodicalId\":426760,\"journal\":{\"name\":\"Proceedings of the ACM on Measurement and Analysis of Computing Systems\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Measurement and Analysis of Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3570616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3570616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

4G、5G和智慧城市网络通常依赖于微波和毫米波x-haul链路。与这些高频链接相关的一个主要挑战是它们对天气条件的易感性。特别是降水会造成严重的信号衰减,严重影响网络性能。在本文中,我们开发了一个预测网络重构(PNR)框架,该框架使用历史数据来预测每个链路的未来状况,然后提前准备网络以应对即将发生的干扰。PNR框架有两个组成部分:(i)衰减预测(AP)机制;(ii)多步网络重构(MSNR)算法。AP机制采用编码器-解码器长短期记忆(LSTM)模型来预测每条链路未来衰减水平的顺序。MSNR算法利用这些预测动态优化路由和接纳控制决策,旨在最大限度地提高网络利用率,同时保持使用网络的节点(例如基站)之间的最大最小公平性,并防止可能由交换路由引起的短暂拥塞。我们使用包含从现实世界的城市规模回程网络收集的超过200万个测量数据集来训练、验证和评估PNR框架。结果表明:(1)该框架预测衰减精度高,在50秒预测范围内RMSE小于0.4 dB;与无法利用未来干扰信息的被动网络重构算法相比,(ii)可以将瞬时网络利用率提高200%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Switching in the Rain: Predictive Wireless x-haul Network Reconfiguration
4G, 5G, and smart city networks often rely on microwave and millimeter-wave x-haul links. A major challenge associated with these high frequency links is their susceptibility to weather conditions. In particular, precipitation may cause severe signal attenuation, which significantly degrades the network performance. In this paper, we develop a Predictive Network Reconfiguration (PNR) framework that uses historical data to predict the future condition of each link and then prepares the network ahead of time for imminent disturbances. The PNR framework has two components: (i) an Attenuation Prediction (AP) mechanism; and (ii) a Multi-Step Network Reconfiguration (MSNR) algorithm. The AP mechanism employs an encoder-decoder Long Short-Term Memory (LSTM) model to predict the sequence of future attenuation levels of each link. The MSNR algorithm leverages these predictions to dynamically optimize routing and admission control decisions aiming to maximize network utilization, while preserving max-min fairness among the nodes using the network (e.g., base-stations) and preventing transient congestion that may be caused by switching routes. We train, validate, and evaluate the PNR framework using a dataset containing over 2 million measurements collected from a real-world city-scale backhaul network. The results show that the framework: (i) predicts attenuation with high accuracy, with an RMSE of less than 0.4 dB for a prediction horizon of 50 seconds; and (ii) can improve the instantaneous network utilization by more than 200% when compared to reactive network reconfiguration algorithms that cannot leverage information about future disturbances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信