人类行为检测与分类的多视图特征聚类技术

Syed Thouheed Ahmed, Nirmala S. Guptha, A. Fathima, S. Ashwini
{"title":"人类行为检测与分类的多视图特征聚类技术","authors":"Syed Thouheed Ahmed, Nirmala S. Guptha, A. Fathima, S. Ashwini","doi":"10.4108/EAI.16-5-2020.2304034","DOIUrl":null,"url":null,"abstract":". Recognizing the actions performed by any person is the most suc-cessful applications in pattern recognition. Detecting the action in a moving camera influences dynamic view changes, is based on spatio-temporal information at multiple temporal scales. In this paper, we are presenting a system that is dependent on actions based on multi-view information. These multi-view features are extracted from various temporal scales. The GMM and Prewitt edge filter is used for detecting background and foreground image. The Nearest Mean Classifier is used to cluster features vector’s of moving object. The experiment results demonstrated using Kth dataset producing 98% of accuracy.","PeriodicalId":274686,"journal":{"name":"Proceedings of the Fist International Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16-17 May 2020, Chennai, India","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-View Feature Clustering Technique for Detection and Classification of Human Actions\",\"authors\":\"Syed Thouheed Ahmed, Nirmala S. Guptha, A. Fathima, S. Ashwini\",\"doi\":\"10.4108/EAI.16-5-2020.2304034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Recognizing the actions performed by any person is the most suc-cessful applications in pattern recognition. Detecting the action in a moving camera influences dynamic view changes, is based on spatio-temporal information at multiple temporal scales. In this paper, we are presenting a system that is dependent on actions based on multi-view information. These multi-view features are extracted from various temporal scales. The GMM and Prewitt edge filter is used for detecting background and foreground image. The Nearest Mean Classifier is used to cluster features vector’s of moving object. The experiment results demonstrated using Kth dataset producing 98% of accuracy.\",\"PeriodicalId\":274686,\"journal\":{\"name\":\"Proceedings of the Fist International Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16-17 May 2020, Chennai, India\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fist International Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16-17 May 2020, Chennai, India\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/EAI.16-5-2020.2304034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fist International Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16-17 May 2020, Chennai, India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.16-5-2020.2304034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

. 识别任何人的行为是模式识别中最成功的应用。检测运动摄像机中的动作对动态视图变化的影响,是基于多时间尺度的时空信息。在本文中,我们提出了一个基于多视图信息的依赖动作的系统。这些多视图特征是从不同的时间尺度中提取的。采用GMM和Prewitt边缘滤波器对背景和前景图像进行检测。采用最接近均值分类器对运动物体的特征向量进行聚类。实验结果表明,使用第k个数据集产生98%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-View Feature Clustering Technique for Detection and Classification of Human Actions
. Recognizing the actions performed by any person is the most suc-cessful applications in pattern recognition. Detecting the action in a moving camera influences dynamic view changes, is based on spatio-temporal information at multiple temporal scales. In this paper, we are presenting a system that is dependent on actions based on multi-view information. These multi-view features are extracted from various temporal scales. The GMM and Prewitt edge filter is used for detecting background and foreground image. The Nearest Mean Classifier is used to cluster features vector’s of moving object. The experiment results demonstrated using Kth dataset producing 98% of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信