基于高维聚类的颅内脑电图患者特异性癫痫检测

Haimonti Dutta, D. Waltz, Karthik M. Ramasamy, Philip Gross, Ansaf Salleb-Aouissi, H. Diab, Manoj Pooleery, C. Schevon, R. Emerson
{"title":"基于高维聚类的颅内脑电图患者特异性癫痫检测","authors":"Haimonti Dutta, D. Waltz, Karthik M. Ramasamy, Philip Gross, Ansaf Salleb-Aouissi, H. Diab, Manoj Pooleery, C. Schevon, R. Emerson","doi":"10.1109/ICMLA.2010.119","DOIUrl":null,"url":null,"abstract":"Automatic seizure detection is becoming popular in modern epilepsy monitoring units since it assists diagnostic monitoring and reduces manual review of large volumes of EEG recordings. In this paper, we describe the application of machine learning algorithms for building patient-specific seizure detectors on multiple frequency bands of intra-cranial electroencephalogram (iEEG) recorded by a dense Micro-Electrode Array (MEA). The MEA is capable of recording at a very high sampling rate (30 KHz) producing an avalanche of time series data. We explore subsets of this data to build seizure detectors – we discuss several methods for extracting univariate and bivariate features from the channels and study the effectiveness of using high dimensional clustering algorithms such as K-means and Subspace clustering for constructing the model. Future work involves design of more robust seizure detectors using other features and non-parametric clustering techniques, detection of artifacts and understanding the generalization properties of the models.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Patient-Specific Seizure Detection from Intra-cranial EEG Using High Dimensional Clustering\",\"authors\":\"Haimonti Dutta, D. Waltz, Karthik M. Ramasamy, Philip Gross, Ansaf Salleb-Aouissi, H. Diab, Manoj Pooleery, C. Schevon, R. Emerson\",\"doi\":\"10.1109/ICMLA.2010.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic seizure detection is becoming popular in modern epilepsy monitoring units since it assists diagnostic monitoring and reduces manual review of large volumes of EEG recordings. In this paper, we describe the application of machine learning algorithms for building patient-specific seizure detectors on multiple frequency bands of intra-cranial electroencephalogram (iEEG) recorded by a dense Micro-Electrode Array (MEA). The MEA is capable of recording at a very high sampling rate (30 KHz) producing an avalanche of time series data. We explore subsets of this data to build seizure detectors – we discuss several methods for extracting univariate and bivariate features from the channels and study the effectiveness of using high dimensional clustering algorithms such as K-means and Subspace clustering for constructing the model. Future work involves design of more robust seizure detectors using other features and non-parametric clustering techniques, detection of artifacts and understanding the generalization properties of the models.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

自动发作检测在现代癫痫监测装置中越来越流行,因为它有助于诊断监测,减少了大量脑电图记录的人工审查。在本文中,我们描述了机器学习算法在密集微电极阵列(MEA)记录的颅内脑电图(iEEG)的多个频段上构建患者特定癫痫检测器的应用。MEA能够以非常高的采样率(30 KHz)记录,产生雪崩的时间序列数据。我们探索这些数据的子集来构建癫痫检测器-我们讨论了几种从通道中提取单变量和双变量特征的方法,并研究了使用高维聚类算法(如K-means和子空间聚类)构建模型的有效性。未来的工作包括使用其他特征和非参数聚类技术设计更健壮的癫痫检测器,检测工件和理解模型的泛化属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Patient-Specific Seizure Detection from Intra-cranial EEG Using High Dimensional Clustering
Automatic seizure detection is becoming popular in modern epilepsy monitoring units since it assists diagnostic monitoring and reduces manual review of large volumes of EEG recordings. In this paper, we describe the application of machine learning algorithms for building patient-specific seizure detectors on multiple frequency bands of intra-cranial electroencephalogram (iEEG) recorded by a dense Micro-Electrode Array (MEA). The MEA is capable of recording at a very high sampling rate (30 KHz) producing an avalanche of time series data. We explore subsets of this data to build seizure detectors – we discuss several methods for extracting univariate and bivariate features from the channels and study the effectiveness of using high dimensional clustering algorithms such as K-means and Subspace clustering for constructing the model. Future work involves design of more robust seizure detectors using other features and non-parametric clustering techniques, detection of artifacts and understanding the generalization properties of the models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信