R. Nabiei, M. Najafian, M. Parekh, P. Jančovič, M. Russell
{"title":"减少脑卒中康复中人类活动实时识别的延迟","authors":"R. Nabiei, M. Najafian, M. Parekh, P. Jančovič, M. Russell","doi":"10.1109/SPLIM.2016.7528413","DOIUrl":null,"url":null,"abstract":"Assisting patients to perform activity of daily living (ADLs) is a challenging task for both human and machine. Hence, developing a computer-based rehabilitation system to re-train patients to carry out daily activities is an essential step towards facilitating rehabilitation of stroke patients with apraxia and action disorganization syndrome (AADS). This paper presents a real-time hidden Markov model (HMM) based human activity recognizer, and proposes a technique to reduce the time-delay occurred during the decoding stage. Results are reported for complete tea-making trials. In this study, the input features are recorded using sensors attached to the objects involved in the tea-making task, plus hand coordinate data captured using KinectTM sensor. A coaster of sensors, comprising an accelerometer and three force-sensitive resistors, are packaged in a unit which can be easily attached to the base of an object. A parallel asynchronous set of detectors, each responsible for the detection of one sub-goal in the tea-making task, are used to address challenges arising from overlaps between human actions. The proposed activity recognition system with the modified HMM topology provides a practical solution to the action recognition problem and reduces the time-delay by 64% with no loss in accuracy.","PeriodicalId":297318,"journal":{"name":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Delay reduction in real-time recognition of human activity for stroke rehabilitation\",\"authors\":\"R. Nabiei, M. Najafian, M. Parekh, P. Jančovič, M. Russell\",\"doi\":\"10.1109/SPLIM.2016.7528413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assisting patients to perform activity of daily living (ADLs) is a challenging task for both human and machine. Hence, developing a computer-based rehabilitation system to re-train patients to carry out daily activities is an essential step towards facilitating rehabilitation of stroke patients with apraxia and action disorganization syndrome (AADS). This paper presents a real-time hidden Markov model (HMM) based human activity recognizer, and proposes a technique to reduce the time-delay occurred during the decoding stage. Results are reported for complete tea-making trials. In this study, the input features are recorded using sensors attached to the objects involved in the tea-making task, plus hand coordinate data captured using KinectTM sensor. A coaster of sensors, comprising an accelerometer and three force-sensitive resistors, are packaged in a unit which can be easily attached to the base of an object. A parallel asynchronous set of detectors, each responsible for the detection of one sub-goal in the tea-making task, are used to address challenges arising from overlaps between human actions. The proposed activity recognition system with the modified HMM topology provides a practical solution to the action recognition problem and reduces the time-delay by 64% with no loss in accuracy.\",\"PeriodicalId\":297318,\"journal\":{\"name\":\"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPLIM.2016.7528413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPLIM.2016.7528413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Delay reduction in real-time recognition of human activity for stroke rehabilitation
Assisting patients to perform activity of daily living (ADLs) is a challenging task for both human and machine. Hence, developing a computer-based rehabilitation system to re-train patients to carry out daily activities is an essential step towards facilitating rehabilitation of stroke patients with apraxia and action disorganization syndrome (AADS). This paper presents a real-time hidden Markov model (HMM) based human activity recognizer, and proposes a technique to reduce the time-delay occurred during the decoding stage. Results are reported for complete tea-making trials. In this study, the input features are recorded using sensors attached to the objects involved in the tea-making task, plus hand coordinate data captured using KinectTM sensor. A coaster of sensors, comprising an accelerometer and three force-sensitive resistors, are packaged in a unit which can be easily attached to the base of an object. A parallel asynchronous set of detectors, each responsible for the detection of one sub-goal in the tea-making task, are used to address challenges arising from overlaps between human actions. The proposed activity recognition system with the modified HMM topology provides a practical solution to the action recognition problem and reduces the time-delay by 64% with no loss in accuracy.