概率密度函数

T. Donovan, R. Mickey
{"title":"概率密度函数","authors":"T. Donovan, R. Mickey","doi":"10.1093/OSO/9780198841296.003.0009","DOIUrl":null,"url":null,"abstract":"This chapter builds on probability distributions. Its focus is on general concepts associated with probability density functions (pdf’s), which are distributions associated with continuous random variables. The continuous uniform and normal distributions are highlighted as examples of pdf’s. These and other pdf’s can be used to specify prior distributions, likelihoods, and/or posterior distributions in Bayesian inference. Although this chapter specifically focuses on the continuous uniform and normal distributions, the concepts discussed in this chapter will apply to other continuous probability distributions. By the end of the chapter, the reader should be able to define and use the following terms for a continuous random variable: random variable, probability distribution, parameter, probability density, likelihood, and likelihood profile.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability Density Functions\",\"authors\":\"T. Donovan, R. Mickey\",\"doi\":\"10.1093/OSO/9780198841296.003.0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter builds on probability distributions. Its focus is on general concepts associated with probability density functions (pdf’s), which are distributions associated with continuous random variables. The continuous uniform and normal distributions are highlighted as examples of pdf’s. These and other pdf’s can be used to specify prior distributions, likelihoods, and/or posterior distributions in Bayesian inference. Although this chapter specifically focuses on the continuous uniform and normal distributions, the concepts discussed in this chapter will apply to other continuous probability distributions. By the end of the chapter, the reader should be able to define and use the following terms for a continuous random variable: random variable, probability distribution, parameter, probability density, likelihood, and likelihood profile.\",\"PeriodicalId\":285230,\"journal\":{\"name\":\"Bayesian Statistics for Beginners\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Statistics for Beginners\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/OSO/9780198841296.003.0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841296.003.0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章以概率分布为基础。它的重点是与概率密度函数(pdf 's)相关的一般概念,它是与连续随机变量相关的分布。连续均匀分布和正态分布是pdf的例子。在贝叶斯推理中,这些pdf和其他pdf可用于指定先验分布、可能性和/或后验分布。虽然本章特别关注连续均匀分布和正态分布,但本章讨论的概念也适用于其他连续概率分布。在本章结束时,读者应该能够定义和使用连续随机变量的以下术语:随机变量,概率分布,参数,概率密度,似然和似然轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probability Density Functions
This chapter builds on probability distributions. Its focus is on general concepts associated with probability density functions (pdf’s), which are distributions associated with continuous random variables. The continuous uniform and normal distributions are highlighted as examples of pdf’s. These and other pdf’s can be used to specify prior distributions, likelihoods, and/or posterior distributions in Bayesian inference. Although this chapter specifically focuses on the continuous uniform and normal distributions, the concepts discussed in this chapter will apply to other continuous probability distributions. By the end of the chapter, the reader should be able to define and use the following terms for a continuous random variable: random variable, probability distribution, parameter, probability density, likelihood, and likelihood profile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信